Matching Items (5)
Filtering by

Clear all filters

150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
135326-Thumbnail Image.png
Description
The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign

The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign contaminants in IN 718 (Ni-based superalloy) powder with a mean diameter around 40um. In order to clearly analyze the contaminants and recycle useful IN 718 powders, powder separation is favorable since the filtered samples will be much easier to characterize rather than inspect all the powders at once under microscope. By conducting literature review, I found that powder separation is commonly used in Geology, and Chemistry department. To screen which combination of techniques could be the best for my project, I have consulted several research specialists, obtained adequate knowledge about powder separation. Accordingly, I will summarize the pros and cons of each method with regard the specific project that I am working on, and further explore the impacts of each method under economical, societal, and environmental considerations. Several powder separation techniques will be discussed in details in the following sections, including water elutriation, settling column, magnetic separation and centrifugation. In addition to these methods, sieving, water tabling and panning will be briefly introduced. After detailed comparison, I found that water elutriation is the most efficient way to purity IN718 powder for reuse purpose, and recovery rate is as high as 70%, which could result in a significant reduction in the manufacturing cost for Honeywell since currently Honeywell only use virgin powders to build parts, and 90% of the leftover powders are discarded.
ContributorsLuo, Zheyu (Author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135333-Thumbnail Image.png
Description
Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years.

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years. Reusing IN 718 powder, a nickel-based super alloy metal powder, is an ideal option to reduce costs as well as reduce waste because it can be used with additive manufacturing, but the main obstacles are lack of procedure standardization and product quality assurances from this process. The goal of the capstone project, "Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity," is to create a powder characterization protocol in order to determine if the IN 718 powder can be reused and what effect the IN 718 reused powder has on the mechanical properties of the products Honeywell fabricates. To provide context and impact of this capstone project, this paper serves to identify the benefits of AM for Honeywell and the cost effectiveness of reusing the powder versus using virgin powder every time. It was found that Honeywell's investment in AM is due to the cost effectiveness of AM, versatility in product design, and to ensure Honeywell remains competitive in the future. In terms of reducing expenses, reusing powder enables costs to be approximately 45% less than using virgin powder. With these key pieces of information, the motivations for this capstone project are understood to a fuller and more profound degree.
ContributorsQuigley, Elizabeth (Co-author) / Luo, Zheyu (Co-author) / Murella, Anoosha (Co-author) / Lee, Wey Lyn (Co-author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155242-Thumbnail Image.png
Description
The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new

The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new dimension of complexity has emerged in the understanding of alloy microstructure development, hence, potential alloy development opportunity for IN718.

This study is a broad stroke at discovering possible alternate microstructures developing in Direct-Metal-Laser-Sintering (DMLS) processed IN718 compared to those in conventional wrought IN718. The main inspiration for this study came from creep test results from several DMLS IN718 samples at Honeywell that showed a significant

improvement in creep capabilities for DMLS718 compared to cast and wrought IN718 (Honeywell).

From this data the steady-state creep rates were evaluated and fitted to current creep models in order to identify active creep mechanisms in conventional and DMLS IN718 and illuminate the potential factors responsible for the improved creep behavior in DMSL processed IN718.

Because rapid heating and cooling can introduce high internal stress and impact microstructural development, such as gamma double prime formations (Oblak et al.), leading to differences in material behavior, DMLS and conventional IN718 materials are studied using SEM and TEM characterization to investigate sub-micron and/or nano-scale

microstructural differences developed in the DMLS samples as a result of their complex thermal history and internal stress.

The preliminary analysis presented in this body of work is an attempt to better understand the effect of DMLS processing in quest for development of optimization techniques for DMLS as a whole. A historical sketch of nickel alloys and the development of IN718 is given. A literature review detailing the microstructure of IN718 is presented. Creep data analysis and identification of active creep mechanisms are evaluated. High-resolution microstructural characterization of DMLS and wrought IN718 are discussed in detail throughout various chapters of this thesis. Finally, an initial effort in developing a processing model that would allow for parameter optimization is presented.
ContributorsRogers, Blake Kenton (Author) / Tasooji, Amaneh (Thesis advisor) / Petuskey, William (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2017
135298-Thumbnail Image.png
Description
This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to cause a sudden fracture leading to signature markings for various phases of crack growth. Effects caused by contamination would be found in the first region of crack growth at the initiation site as the cause stress concentration. Tensile strength and fatigue life were compared to initiation site size found from fracture images obtained using scanning electron microscope imaging which found no significant deviations from the expected surface cracking and LCF region of slip plane buildups. Contamination was not found at any initiation site indicating that fracture life was not impacted by the amount of powder recycling. LCF life ranged from 60,000 to 250,000 which the majority experiencing fractures near 120,000 cyclic loadings. If defect effects were to be found than the low fatigue life sample would exhibit them however its fracture surface did not exhibit contamination but a slight increase in porosity found in the phase III cracking region. The In 718 powders were also analyzed to determine that the primary powder contaminates were brush fibers used to sweep away unused powders during processing however these were not seen in the final DMLS samples.
ContributorsLaws, Alec Ky (Author) / Tasooji, Amaneh (Thesis director) / Eylon, Daniel (Committee member) / Materials Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05