Matching Items (7)

Filtering by

Clear all filters

133533-Thumbnail Image.png

Anisotropic Effects on the Mechanical Properties of Additively Manufactured Plastics

Description

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently anisotropic due to the direction of the layers and associated weaknesses or stress concentrators. Thus, the ultimate strength and elastic modulus of plastic specimens produced using default settings are compared based on print orientation angle, and trends are observed. When a specimen is parallel to the build plate, it tends to have ultimate strength and elastic modulus near the published bulk values of 13.2MPa and 404-710MPa, but these values tend to decrease as the print angle increases.

Contributors

Created

Date Created
2018-05

135326-Thumbnail Image.png

Effect of Powder Re-use on DMLS Product Integrity

Description

The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature

The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign contaminants in IN 718 (Ni-based superalloy) powder with a mean diameter around 40um. In order to clearly analyze the contaminants and recycle useful IN 718 powders, powder separation is favorable since the filtered samples will be much easier to characterize rather than inspect all the powders at once under microscope. By conducting literature review, I found that powder separation is commonly used in Geology, and Chemistry department. To screen which combination of techniques could be the best for my project, I have consulted several research specialists, obtained adequate knowledge about powder separation. Accordingly, I will summarize the pros and cons of each method with regard the specific project that I am working on, and further explore the impacts of each method under economical, societal, and environmental considerations. Several powder separation techniques will be discussed in details in the following sections, including water elutriation, settling column, magnetic separation and centrifugation. In addition to these methods, sieving, water tabling and panning will be briefly introduced. After detailed comparison, I found that water elutriation is the most efficient way to purity IN718 powder for reuse purpose, and recovery rate is as high as 70%, which could result in a significant reduction in the manufacturing cost for Honeywell since currently Honeywell only use virgin powders to build parts, and 90% of the leftover powders are discarded.

Contributors

Agent

Created

Date Created
2016-05

135333-Thumbnail Image.png

Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity: Why Honeywell Believes the Future is Additive Manufacturing

Description

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years. Reusing IN 718 powder, a nickel-based super alloy metal powder, is an ideal option to reduce costs as well as reduce waste because it can be used with additive manufacturing, but the main obstacles are lack of procedure standardization and product quality assurances from this process. The goal of the capstone project, "Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity," is to create a powder characterization protocol in order to determine if the IN 718 powder can be reused and what effect the IN 718 reused powder has on the mechanical properties of the products Honeywell fabricates. To provide context and impact of this capstone project, this paper serves to identify the benefits of AM for Honeywell and the cost effectiveness of reusing the powder versus using virgin powder every time. It was found that Honeywell's investment in AM is due to the cost effectiveness of AM, versatility in product design, and to ensure Honeywell remains competitive in the future. In terms of reducing expenses, reusing powder enables costs to be approximately 45% less than using virgin powder. With these key pieces of information, the motivations for this capstone project are understood to a fuller and more profound degree.

Contributors

Agent

Created

Date Created
2016-05

135298-Thumbnail Image.png

Effect of Powder Recycling on Direct-Metal-Laser-Sintered Aerospace Alloy

Description

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to cause a sudden fracture leading to signature markings for various phases of crack growth. Effects caused by contamination would be found in the first region of crack growth at the initiation site as the cause stress concentration. Tensile strength and fatigue life were compared to initiation site size found from fracture images obtained using scanning electron microscope imaging which found no significant deviations from the expected surface cracking and LCF region of slip plane buildups. Contamination was not found at any initiation site indicating that fracture life was not impacted by the amount of powder recycling. LCF life ranged from 60,000 to 250,000 which the majority experiencing fractures near 120,000 cyclic loadings. If defect effects were to be found than the low fatigue life sample would exhibit them however its fracture surface did not exhibit contamination but a slight increase in porosity found in the phase III cracking region. The In 718 powders were also analyzed to determine that the primary powder contaminates were brush fibers used to sweep away unused powders during processing however these were not seen in the final DMLS samples.

Contributors

Created

Date Created
2016-05

148173-Thumbnail Image.png

Breakdown and classification of skill transfer type between a hockey slap shot and golf drive

Description

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does

There is surprisingly little scientific literature describing whether a hockey slap shot positively or negatively transfers to a driving golf swing. Golf and hockey use a similar kinematic sequence to send the ball / puck towards a target, but does that directly translate to positive skill transfer between the two sports, or are there other important factors that could result in a negative skill transfer? The aim of this study is to look further into the two kinematic sequences and determine their intertask skill transfer type. A field experiment was conducted, following a specific research design, in order to compare performance between two groups, one being familiar with the skill that may transfer (hockey slapshot) and the other group being unfamiliar. Both groups had no experience in the skill being tested (driving golf swing) and various data was collected as all of the subjects performed 10 golf swings. The results of the data analysis showed that the group with experience in hockey had a higher variability of ball distance and ball speed. There are many factors of a hockey slapshot that are likely to develop a negative intertask skill transfer, resulting in this group's high inconsistency when performing a golf swing. On the other hand, the group with hockey experience also had higher mean club speed, showing that some aspects of the hockey slapshot resulted in a positive skill transfer, aiding their ability to perform a golf swing.

Contributors

Agent

Created

Date Created
2021-05

132870-Thumbnail Image.png

The Manufacturing and Effects of Core Geometry in 3D Printed Fuel Grains

Description

The standard for hybrid fuel grains is Hydroxyl-terminated polybutadiene (HTPB). With the advances in additive manufacturing, the promise of 3D printed fuel grains has become a possibility. Yet, 3D printed grains do not have as good of a regression rate

The standard for hybrid fuel grains is Hydroxyl-terminated polybutadiene (HTPB). With the advances in additive manufacturing, the promise of 3D printed fuel grains has become a possibility. Yet, 3D printed grains do not have as good of a regression rate as the casted HTPB grains. However, with 3D printing, the core of these grains can be printed to maximize surface area in contact with the oxidizer. The goal of this research is to print hybrid rocket fuel grains with various core geometries and test them on a small-scale hybrid test stand. While the hot fires are still under testing at the time of this abstract, the manufacturing posed an interesting outcome, being more time intensive than expected, contradicting the initial hypothesis of faster manufacturing. Future endeavors will continue research into the cores of the 3D printed grains, possible multi-material made grains and creating core structures for HTPB grains from 3D printed materials.

Contributors

Agent

Created

Date Created
2019-05

134778-Thumbnail Image.png

Dissolvable Metal Supports - Simplifying Metals Printing

Description

Additive Manufacturing and 3D printing are becoming important technologies in the manufacturing sector. The benefits of this technology include complex part geometry, short lead-times, low waste, and simple user interface. However, the technology does not come without its drawbacks: mainly

Additive Manufacturing and 3D printing are becoming important technologies in the manufacturing sector. The benefits of this technology include complex part geometry, short lead-times, low waste, and simple user interface. However, the technology does not come without its drawbacks: mainly the removal of support structures from the component. Traditional techniques that involve sawing and cutting can be expensive and take a long time, increasing the overall price of 3D printed metal components. This paper discusses two approaches taken for dissolvable support structures in 3D printed stainless steel (17-4 PH). For the first time in powder bed fusion components, with the help of Christopher Lefky and Dr. Owen Hildreth, dissolvable support capabilities are achieved in metal prints. The first approach, direct dissolution, involves direct corrosion of the entire part, leading to support removal. This approach is not self-terminating, and leads to changes in final component geometry. The second approach involves a post-build sensitization step, which physically alters the microstructure and chemical stability of the first 100-200 microns of the metal. The component is then etched at an electric potential that will readily corrode this sensitized surface, but not the underlying base metal. An electrolytic solution of HNO3/KCl/HCl paired with an anodic bias was used for the direct dissolution approach, resulting in a loss of about 120 microns of material from the components surface. For the self-limiting approach, surface sensitization was achieve through a post build annealing step (800 C for 6 hours, air cooled) with exposure to a sodium hexacynoferrate slurry. When the slurry decomposes in the furnace, carbon atoms diffuse into the surface and precipitate a chromium-carbide, which reduces the chemical stability of the stainless steel. Etching is demonstrated in an anodic bias of HNO3/KCl. To determine proper etching potentials, open circuit potential and cyclic voltammetry experiments were run to create Potentiodynamic Polarization Curves. Further testing of the self-terminating approach was performed on a 316 stainless steel interlocking ring structure with a complex geometry. In this case, 32.5 hours of etching at anodic potentials replaced days of mechanical sawing and cutting.

Contributors

Agent

Created

Date Created
2016-12