Matching Items (10)

Filtering by

Clear all filters

133533-Thumbnail Image.png

Anisotropic Effects on the Mechanical Properties of Additively Manufactured Plastics

Description

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently anisotropic due to the direction of the layers and associated weaknesses or stress concentrators. Thus, the ultimate strength and elastic modulus of plastic specimens produced using default settings are compared based on print orientation angle, and trends are observed. When a specimen is parallel to the build plate, it tends to have ultimate strength and elastic modulus near the published bulk values of 13.2MPa and 404-710MPa, but these values tend to decrease as the print angle increases.

Contributors

Created

Date Created
2018-05

134463-Thumbnail Image.png

A Study of Metal Additive Manufacturing: DMLS Design for Optimizing Automobile Components

Description

Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to

Automobiles can advance greatly with the introduction of metal additive manufactured components. Additive tooling is slowly becoming additive manufacturing and someday the technology will be advanced enough that high volume can be supported. This research was conducted in order to show the advantages metal additive manufacturing has in the automobile industry. One large advantage to metal additive manufacturing is mass reduction. Components can be designed for production with different geometries than other manufacturing methods. The change in geometry can significantly reduce the product volume and therefore mass. Overall, mass reduction in the automotive industry is beneficial. Mass reduction can increase performance and fuel economy of the car. Once metal additive manufacturing becomes capable of higher production, metal additive manufacturing will play a major role in automobile manufacturing. Research was conducted to design and produce an optimized AC compressor bracket. The bracket was designed to the specifications of the OEM component, and the mass was reduced by more than half.

Contributors

Agent

Created

Date Created
2017-05

Metallurgical Test Comparison of Aerospace Material using Additive Manufacturing Technologies vs. Wrought Technologies

Description

The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous

The aerospace industry has been conducting research on the additive manufacturing (AM) process since the 1980's, but companies have recently just begun to apply AM in hopes that this new technology will meet or exceed the requirements met by previous manufacturing methods, as well as producing more cost effective, geometrically-complex products. This investigation evaluated the performance of 3D-printed aerospace test specimens made by Powder Bed Fusion Technologies, and compared them to forged specimens. A design of experiments varying build parameters was conducted in order to determine AM component porosity. Factors such as powder post-processing, directionality of the build, and fractology of the samples were evaluated through tensile strength testing and hardness testing of Inconel 718 wrought and EBM printed materials. Using electron microsopy, the responses to these factors were analyzed for stress fractures, grain boundaries, and other defects that occurred in the testing process. The comparison determined which metallurgical process provides the most effective material for aircraft usage.

Contributors

Agent

Created

Date Created
2017-05

135298-Thumbnail Image.png

Effect of Powder Recycling on Direct-Metal-Laser-Sintered Aerospace Alloy

Description

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the

This project sought to analyze the effects of recycling Inconel 718 powder for Direct Metal Laser Sintering (DMSL) for additive manufacturing by testing low cycle fatigue tensile samples ranging from virgin to ten times recycled. Fracture generally occurs at the sample surface where persistent slip planes form and accumulate to cause a sudden fracture leading to signature markings for various phases of crack growth. Effects caused by contamination would be found in the first region of crack growth at the initiation site as the cause stress concentration. Tensile strength and fatigue life were compared to initiation site size found from fracture images obtained using scanning electron microscope imaging which found no significant deviations from the expected surface cracking and LCF region of slip plane buildups. Contamination was not found at any initiation site indicating that fracture life was not impacted by the amount of powder recycling. LCF life ranged from 60,000 to 250,000 which the majority experiencing fractures near 120,000 cyclic loadings. If defect effects were to be found than the low fatigue life sample would exhibit them however its fracture surface did not exhibit contamination but a slight increase in porosity found in the phase III cracking region. The In 718 powders were also analyzed to determine that the primary powder contaminates were brush fibers used to sweep away unused powders during processing however these were not seen in the final DMLS samples.

Contributors

Created

Date Created
2016-05

135702-Thumbnail Image.png

Large-Scale Rapid Prototyping Utilizing Adaptive Slicing Techniques

Description

A method has been developed that employs both procedural and optimization algorithms to adaptively slice CAD models for large-scale additive manufacturing (AM) applications. AM, the process of joining material layer by layer to create parts based on 3D model data,

A method has been developed that employs both procedural and optimization algorithms to adaptively slice CAD models for large-scale additive manufacturing (AM) applications. AM, the process of joining material layer by layer to create parts based on 3D model data, has been shown to be an effective method for quickly producing parts of a high geometric complexity in small quantities. 3D printing, a popular and successful implementation of this method, is well-suited to creating small-scale parts that require a fine layer resolution. However, it starts to become impractical for large-scale objects due to build volume and print speed limitations. The proposed layered manufacturing technique builds up models from layers of much thicker sheets of material that can be cut on three-axis CNC machines and assembled manually. Adaptive slicing techniques were utilized to vary layer thickness based on surface complexity to minimize both the cost and error of the layered model. This was realized as a multi-objective optimization problem where the number of layers used represented the cost and the geometric difference between the sliced model and the CAD model defined the error. This problem was approached with two different methods, one of which was a procedural process of placing layers from a set of discrete thicknesses based on the Boolean Exclusive OR (XOR) area difference between adjacent layers. The other method implemented an optimization solver to calculate the precise thickness of each layer to minimize the overall volumetric XOR difference between the sliced and original models. Both methods produced results that help validate the efficiency and practicality of the proposed layered manufacturing technique over existing AM technologies for large-scale applications.

Contributors

Agent

Created

Date Created
2016-05

148273-Thumbnail Image.png

Theoretical Modeling of Ti6Al4V Alloy Based on Testing Results

Description

Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably

Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has a noteworthy corrosion resistance as it is stable when it oxidizes, and due to the inert nature of the metal, it is famously hypoallergenic and as a result used in a great deal of aviation and medical fields, including being used to produce replacement joints, with the notable limitation of the material being its cost of manufacturing. Among the variants of the metal and alloys used, Ti6Al4V alloy is famous for being the most reliable and popular combination for electron beam manufacturing(EBM) as a method of additive manufacturing. <br/>Developed by the Swedish Arcam, AB, EBM is one of the more recent methods of additive manufacturing, and is notable for its lack of waste by combining most of the material into the intended product due to its precision. This method, much like the titanium it is used to print in this case, is limited mostly by time and value of production. <br/>For this thesis, nine different simulations of a dogbone model were generated and analyzed in Ansys APDL using finite element analysis at various temperature and print conditions to create a theoretical model based on experimentally produced values.

Contributors

Agent

Created

Date Created
2021-05

147589-Thumbnail Image.png

Engineering Education: How Today's Youth Learns CAD Skills in an Online Environment

Description

The purpose of this project is to assess how well today’s youth is able to learn new skills<br/>in the realm of engineering through online video-conferencing resources. Each semester of this<br/>last year, a class of students in both 3rd and 6th

The purpose of this project is to assess how well today’s youth is able to learn new skills<br/>in the realm of engineering through online video-conferencing resources. Each semester of this<br/>last year, a class of students in both 3rd and 6th grade learned about computer-aided design (CAD)<br/>and 3D printing through their laptops at school. This was done by conducting online lessons of<br/>TinkerCAD via Zoom and Google Meet. TinkerCAD is a simple website that incorporates easy-to-learn skills and gives students an introduction to some of the basic operations that are used in<br/>everyday CAD endeavors. In each lesson, the students would learn new skills by creating<br/>increasingly difficult objects that would test both their ability to learn new skills and their overall<br/>enjoyment with the subject matter. The findings of this project reflect that students are able to<br/>quickly learn and retain new information relating to CAD. The group of 6th graders was able to<br/>learn much faster, which was expected, but the class of 3rd graders still maintained the<br/>knowledge gained from previous lessons and were able to construct increasingly complicated<br/>objects without much struggle. Overall, the students in both classes enjoyed the lessons and did<br/>not find them too difficult, despite the online environment that we were required to use. Some<br/>students found the material more interesting than others, but in general, the students found it<br/>enjoyable to learn about a new skill that has significant real-world applications

Contributors

Agent

Created

Date Created
2021-05

160775-Thumbnail Image.png

logsdon_fall_2021.pdf

Description

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of concept small format 3D printer and then the development of the full scale printer. I wrote custom code to run the printer and create complex models as well as code to automatic dispense the viscous polymer we were using.

Contributors

Agent

Created

Date Created
2021-12

160776-Thumbnail Image.png

final-thesis-presentation.pdf

Description

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of concept small format 3D printer and then the development of the full scale printer. I wrote custom code to run the printer and create complex models as well as code to automatic dispense the viscous polymer we were using.

Contributors

Agent

Created

Date Created
2021-12

Research and Development of a UV Assisted Direct Ink Write 3D Printer

Description

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of concept small format 3D printer and then the development of the full scale printer. I wrote custom code to run the printer and create complex models as well as code to automatic dispense the viscous polymer we were using.

Contributors

Agent

Created

Date Created
2021-12