Matching Items (4)
Filtering by

Clear all filters

156689-Thumbnail Image.png
Description
Since the advent of the internet and even more after social media platforms, the explosive growth of textual data and its availability has made analysis a tedious task. Information extraction systems are available but are generally too specific and often only extract certain kinds of information they deem necessary and

Since the advent of the internet and even more after social media platforms, the explosive growth of textual data and its availability has made analysis a tedious task. Information extraction systems are available but are generally too specific and often only extract certain kinds of information they deem necessary and extraction worthy. Using data visualization theory and fast, interactive querying methods, leaving out information might not really be necessary. This thesis explores textual data visualization techniques, intuitive querying, and a novel approach to all-purpose textual information extraction to encode large text corpus to improve human understanding of the information present in textual data.

This thesis presents a modified traversal algorithm on dependency parse output of text to extract all subject predicate object pairs from text while ensuring that no information is missed out. To support full scale, all-purpose information extraction from large text corpuses, a data preprocessing pipeline is recommended to be used before the extraction is run. The output format is designed specifically to fit on a node-edge-node model and form the building blocks of a network which makes understanding of the text and querying of information from corpus quick and intuitive. It attempts to reduce reading time and enhancing understanding of the text using interactive graph and timeline.
ContributorsHashmi, Syed Usama (Author) / Bansal, Ajay (Thesis advisor) / Bansal, Srividya (Committee member) / Gonzalez Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2018
156614-Thumbnail Image.png
Description
Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array

Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array of needs,

diverse groups need customized course curriculum. The need for having an archetype

to design a course focusing on the outcomes paved the way for Outcome-based

Education (OBE). OBE focuses on the outcomes as opposed to the traditional way of

following a process [23]. According to D. Clark, the major reason for the creation of

Bloom’s taxonomy was not only to stimulate and inspire a higher quality of thinking

in academia – incorporating not just the basic fact-learning and application, but also

to evaluate and analyze on the facts and its applications [7]. Instructional Module

Development System (IMODS) is the culmination of both these models – Bloom’s

Taxonomy and OBE. It is an open-source web-based software that has been

developed on the principles of OBE and Bloom’s Taxonomy. It guides an instructor,

step-by-step, through an outcomes-based process as they define the learning

objectives, the content to be covered and develop an instruction and assessment plan.

The tool also provides the user with a repository of techniques based on the choices

made by them regarding the level of learning while defining the objectives. This helps

in maintaining alignment among all the components of the course design. The tool

also generates documentation to support the course design and provide feedback

when the course is lacking in certain aspects.

It is not just enough to come up with a model that theoretically facilitates

effective result-oriented course design. There should be facts, experiments and proof

that any model succeeds in achieving what it aims to achieve. And thus, there are two

research objectives of this thesis: (i) design a feature for course design feedback and

evaluate its effectiveness; (ii) evaluate the usefulness of a tool like IMODS on various

aspects – (a) the effectiveness of the tool in educating instructors on OBE; (b) the

effectiveness of the tool in providing appropriate and efficient pedagogy and

assessment techniques; (c) the effectiveness of the tool in building the learning

objectives; (d) effectiveness of the tool in document generation; (e) Usability of the

tool; (f) the effectiveness of OBE on course design and expected student outcomes.

The thesis presents a detailed algorithm for course design feedback, its pseudocode, a

description and proof of the correctness of the feature, methods used for evaluation

of the tool, experiments for evaluation and analysis of the obtained results.
ContributorsRaj, Vaishnavi (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2018
154747-Thumbnail Image.png
Description
Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of

Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of classification of software requirements statements into categories easily comprehensible for developers for faster development and delivery, which till now was mostly done manually by software engineers - indeed a tedious job. However, most of the research was focused on classification of Non-functional requirements pertaining to intangible features such as security, reliability, quality and so on. It is indeed a challenging task to automatically classify functional requirements, those pertaining to how the system will function, especially those belonging to different and large enterprise systems. This requires exploitation of text mining capabilities. This thesis aims to investigate results of text classification applied on functional software requirements by creating a framework in R and making use of algorithms and techniques like k-nearest neighbors, support vector machine, and many others like boosting, bagging, maximum entropy, neural networks and random forests in an ensemble approach. The study was conducted by collecting and visualizing relevant enterprise data manually classified previously and subsequently used for training the model. Key components for training included frequency of terms in the documents and the level of cleanliness of data. The model was applied on test data and validated for analysis, by studying and comparing parameters like precision, recall and accuracy.
ContributorsSwadia, Japa (Author) / Ghazarian, Arbi (Thesis advisor) / Bansal, Srividya (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2016
Description
Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and tightly coupled component of an instructional module. The Instructional Module Development System, or IMODS, seeks to improve STEM, or ‘science, technology, engineering, and math’, education, by equipping educators with a powerful informational tool that helps guide course design by providing information based on contemporary research about pedagogical methodology and assessment practices. This is particularly salient within the higher-education STEM fields because many instructors come from backgrounds that are more technical and most Ph.Ds. in science fields have traditionally not focused on preparing doctoral candidates to teach. This thesis project aims to apply a multidisciplinary approach, blending educational psychology and computer science, to help improve STEM education. By developing an instructional module-scheduling feature for the Web-based IMODS, Instructional Module Development System, system, we can help instructors plan out and organize their course work inside and outside of the classroom, while providing them with relevant helpful research that will help them improve their courses. This article illustrates the iterative design process to gather background research on pacing of workload and learning activities and their influence on student knowledge acquisition, constructively critique and analyze pre-existing information technology (IT) scheduling tools, synthesize graphical user interface, or GUI, mockups based on the background research, and then implement a functional-working prototype using the IMODs framework.
ContributorsCoomber, Wesley Poblete (Author) / Bansal, Srividya (Thesis director) / Lindquist, Timothy (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05