Matching Items (5)
Filtering by

Clear all filters

132815-Thumbnail Image.png
Description
Introduction: Individuals with rotator cuff tears have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). Leading joint hypothesis suggests there is one leading joint that creates the foundation

Introduction: Individuals with rotator cuff tears have been found to compensate in their movement patterns by using lower thoracohumeral elevation angles during certain tasks, as well as increased internal rotation of the shoulder (Vidt et al., 2016). Leading joint hypothesis suggests there is one leading joint that creates the foundation for the entire limb motion, and there are other subordinate joints which monitor the passive interaction torque and create a net torque aiding to limb motions required for the task. This experiment seeks to establish a better understanding of joint control strategies during a wide range of arm movements. Based on the leading joint hypothesis, we hypothesize that when a subject has a rotator cuff tear, their performance of planar and three-dimensional motions should be altered not only at the shoulder, which is often the leading joint, but also at other joints on the arm, such as the elbow and wrist. This paper will focus on the effect of normal aging on the control of the joints of the arm.
Methods: There were 4 groups of participants: healthy younger adults (n=14)(21.74 ± 1.97), healthy older adults (n=12)(55-75), older adults (n=4)(55-75) with a partial-thickness rotator cuff tear, and older adults (n=4)(55-75) with a full-thickness rotator cuff tear (RCT). All four groups completed strength testing, horizontal drawing and pointing tasks, and three dimensional (3D) activities of daily living. Kinematic and kinetic variables of the arm were obtained during horizontal and 3D tasks using data from 12 reflective markers placed on the arm, 8 motion capture cameras, and Cortex motion capture software (Motion Analysis Corp., Santa Rosa, CA). Strength testing tasks were measured using a dynamometer. All strength testing and 3D tasks were completed for three trials and horizontal tasks were completed for two trials.
Results: Results of the younger adult participants showed that during the forward portion of seven 3D tasks, there were four phases of different joint control mechanics seen in a majority of the movements. These phases included active rotation of both the shoulder and the elbow joint, active rotation of the shoulder with passive rotation of the elbow, passive rotation of the shoulder with active rotation of the elbow, and passive rotation of both the shoulder and the elbow. Passive rotation during movements was a result of gravitational torque on the different segments of the arm and interaction torque caused as a result of the multi-joint structure of human limbs. The number of tested participants for the minor RCT, and RCT older adults groups is not yet high enough to produce significant results and because of this their results are not reported in this article. Between the older adult control group and the young adult control group in the tasks upward reach to eye height and hair comb there were significant differences found between the groups. The differences were found in shorter overall time and distance between the two groups in the upward eye task.
Discussion: Through the available results, multiple phases were found where one or both of the joints of the arm moved passively which further supports the LJH and extends it to include 3D movements. With available data, it can be concluded that healthy older adults use movement control strategies, such as shortening distance covered, decreasing time percentage in active joint phases, and increasing time percentage in passive joint phases, to account for atrophy along with other age-related declines in performance, such as a decrease in range of motion. This article is a part of a bigger project which aims to better understand how older adults with RCTs compensate for the decreased strength, the decreased range of motion, and the pain that accompany this type of injury. It is anticipated that the results of this experiment will lead to more research toward better understanding how to treat patients with RCTs.
ContributorsFlores, Noah Mateo (Author) / Dounskaia, Natalia (Thesis director) / Vidt, Meghan (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133025-Thumbnail Image.png
Description
During speech, the brain is constantly processing and monitoring speech output through the auditory feedback loop to ensure correct and accurate speech. If the speech signal is experimentally altered/perturbed while speaking, the brain compensates for the perturbations by changing speech output in the opposite direction of the perturbations. In this

During speech, the brain is constantly processing and monitoring speech output through the auditory feedback loop to ensure correct and accurate speech. If the speech signal is experimentally altered/perturbed while speaking, the brain compensates for the perturbations by changing speech output in the opposite direction of the perturbations. In this study, we designed an experiment that examined the compensatory responses in response to unexpected vowel perturbations during speech. We applied two types of perturbations. In one condition, the vowel /ɛ/ was perturbed toward the vowel /æ/ by simultaneously shifting both the first formant (F1) and the second formant (F2) at 3 different levels (.5=small, 1=medium, and 1.5=large shifts). In another condition, the vowel /ɛ/ was perturbed by shifting F1 at 3 different levels (small, medium, and large shifts). Our results showed that there was a significant perturbation-type effect, with participants compensating more in response to perturbation that shifted /ɛ/ toward /æ/. In addition, we found that there was a significant level effect, with the compensatory responses to level .5 being significantly smaller than the compensatory responses to levels 1 and 1.5, regardless of the perturbation pathway. We also found that responses to shift level 1 and shift level 1.5 did not differ. Overall, our results highlighted the importance of the auditory feedback loop during speech production and how the brain is more sensitive to auditory errors that change a vowel category (e.g., /ɛ/ to /æ/).
ContributorsFitzgerald, Lacee (Author) / Daliri, Ayoub (Thesis director) / Corianne, Rogalsky (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148400-Thumbnail Image.png
Description

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown that the type of auditory error received may impact a participant’s corrective response. In this study, we examined whether participants respond differently to categorical or non-categorical errors. We applied two types of perturbation in real-time by shifting the first formant (F1) and second formant (F2) at three different magnitudes. The vowel /ɛ/ was shifted toward the vowel /æ/ in the categorical perturbation condition. In the non-categorical perturbation condition, the vowel /ɛ/ was shifted to a sound outside of the vowel quadrilateral (increasing both F1 and F2). Our results showed that participants responded to the categorical perturbation while they did not respond to the non-categorical perturbation. Additionally, we found that in the categorical perturbation condition, as the magnitude of the perturbation increased, the magnitude of the response increased. Overall, our results suggest that the brain may respond differently to categorical and non-categorical errors, and the brain is highly attuned to errors in speech.

ContributorsCincera, Kirsten Michelle (Author) / Daliri, Ayoub (Thesis director) / Azuma, Tamiko (Committee member) / School of Sustainability (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05