Matching Items (3)
Filtering by

Clear all filters

152160-Thumbnail Image.png
Description
A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.
ContributorsBabiker, M. Haithem (Author) / Frakes, David H (Thesis advisor) / Adrian, Ronald (Committee member) / Caplan, Michael (Committee member) / Chong, Brian (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
154254-Thumbnail Image.png
Description
Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments

Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.

This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.

The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.

The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
ContributorsChaudhury, Rafeed Ahmed (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald J (Thesis advisor) / Vernon, Brent (Committee member) / Pizziconi, Vincent (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2015
154322-Thumbnail Image.png
Description
The unique anatomical and functional properties of vasculature determine the susceptibility of the spinal cord to ischemia. The spinal cord vascular architecture is designed to withstand major ischemic events by compensating blood supply via important anastomotic channels. One of the important compensatory channels of the arterial basket of the conus

The unique anatomical and functional properties of vasculature determine the susceptibility of the spinal cord to ischemia. The spinal cord vascular architecture is designed to withstand major ischemic events by compensating blood supply via important anastomotic channels. One of the important compensatory channels of the arterial basket of the conus medullaris (ABCM). ABCM consists of one or two arteries arising from the anterior spinal artery (ASA) and circumferentially connecting the ASA and the posterior spinal arteries. In addition to compensatory function, the arterial basket can be involved in arteriovenous fistulae and malformations of the conus. The morphometric anatomical analysis of the ABCM was performed with emphasis on vessel diameters and branching patterns.

A significant ischemic event that overcomes vascular compensatory capacity causes spinal cord injury (SCI). For example, SCI complicating thoracoabdominal aortic aneurysm repair is associated with ischemic injury. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic spinal cord injury causes complex changes in spinal cord blood flow (SCBF), which are closely related to a severity of injury. Manipulating physiological parameters such as mean arterial pressure (MAP) and intrathecal pressure (ITP) may be beneficial for patients with a spinal cord injury. It was discovered in a pig model of SCI that the combination of MAP elevation and cerebrospinal fluid drainage (CSFD) significantly and sustainably improved SCBF and spinal cord perfusion pressure.

In animal models of SCI, regeneration is usually evaluated histologically, requiring animal sacrifice. Thus, there is a need for a technique to detect changes in SCI noninvasively over time. The study was performed comparing manganese-enhanced magnetic resonance imaging (MEMRI) in hemisection and transection SCI rat models with diffusion tensor imaging (DTI) and histology. MEMERI ratio differed among transection and hemisection groups, correlating to a severity of SCI measured by fraction anisotropy and myelin load. MEMRI is a useful noninvasive tool to assess a degree of neuronal damage after SCI.
ContributorsMartirosyan, Nikolay (Author) / Preul, Mark C (Thesis advisor) / Vernon, Brent (Thesis advisor) / Theodore, Nicholas (Committee member) / Lemole, Gerald M. (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016