Matching Items (3)
Filtering by

Clear all filters

156715-Thumbnail Image.png
Description
With the growing penetration of plug-in electric vehicles (PEVs), the impact of the PEV charging brought to the utility grid draws more and more attention. This thesis focused on the optimization of a home energy management system (HEMS) with the presence of PEVs. For a household microgrid with photovoltaic (PV)

With the growing penetration of plug-in electric vehicles (PEVs), the impact of the PEV charging brought to the utility grid draws more and more attention. This thesis focused on the optimization of a home energy management system (HEMS) with the presence of PEVs. For a household microgrid with photovoltaic (PV) panels and PEVs, a HEMS using model predictive control (MPC) is designed to achieve the optimal PEV charging. Soft electric loads and an energy storage system (ESS) are also considered in the optimization of PEV charging in the MPC framework. The MPC is solved through mixed-integer linear programming (MILP) by considering the relationship of energy flows in the optimization problem. Through the simulation results, the performance of optimization results under various electricity price plans is evaluated. The influences of PV capacities on the optimization results of electricity cost are also discussed. Furthermore, the hardware development of a microgrid prototype is also described in this thesis.
ContributorsZhao, Yue (Author) / Chen, Yan (Thesis advisor) / Johnson, Nathan (Committee member) / Lei, Qin (Committee member) / Arizona State University (Publisher)
Created2018
155466-Thumbnail Image.png
Description
With the increasing penetration of Photovoltaic inverters, there is a necessity for recent PV inverters to have smart grid support features for increased power system reliability and security. The grid support features include voltage support, active and reactive power control. These support features mean that inverters should have bidirectional power

With the increasing penetration of Photovoltaic inverters, there is a necessity for recent PV inverters to have smart grid support features for increased power system reliability and security. The grid support features include voltage support, active and reactive power control. These support features mean that inverters should have bidirectional power and communication capabilities. The inverter should be able to communicate with the grid utility and other inverter modules.

This thesis studies the real time simulation of smart inverters using PLECS Real Time Box. The real time simulation is performed as a Controller Hardware in the Loop (CHIL) real time simulation. In this thesis, the power stage of the smart inverter is emulated in the PLECS Real Time Box and the controller stage of the inverter is programmed in the Digital Signal Processor (DSP) connected to the real time box. The power stage emulated in the real time box and the controller implemented in the DSP form a closed loop smart inverter.

This smart inverter, with power stage and controller together, is then connected to an OPAL-RT simulator which emulates the power distribution system of the Arizona State University Poly campus. The smart inverter then sends and receives commands to supply power and support the grid. The results of the smart inverter with the PLECS Real time box and the smart inverter connected to an emulated distribution system are discussed under various conditions based on the commands received by the smart inverter.
ContributorsThiagarajan, Ramanathan (Author) / Ayyanar, Raja (Thesis advisor) / Lei, Qin (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2017
157844-Thumbnail Image.png
Description
This dissertation covers three primary topics and relates them in context. High frequency transformer design, microgrid modeling and control, and converter design as it pertains to the other topics are each investigated, establishing a summary of the state-of-the-art at the intersection of the three as a baseline. The culminating work

This dissertation covers three primary topics and relates them in context. High frequency transformer design, microgrid modeling and control, and converter design as it pertains to the other topics are each investigated, establishing a summary of the state-of-the-art at the intersection of the three as a baseline. The culminating work produced by the confluence of these topics is a novel modular solid-state transformer (SST) design, featuring an array of dual active bridge (DAB) converters, each of which contains an optimized high-frequency transformer, and an array of grid-forming inverters (GFI) suitable for centralized control in a microgrid environment. While no hardware was produced for this design, detailed modeling and simulation has been completed, and results are contextualized by rigorous analysis and comparison with results from published literature. The main contributions to each topic are best presented by topic area. For transformers, contributions include collation and presentation of the best-known methods of minimum loss high-frequency transformer design and analysis, descriptions of the implementation of these methods into a unified design script as well as access to an example of such a script, and the derivation and presentation of novel tools for analysis of multi-winding and multi-frequency transformers. For microgrid modeling and control, contributions include the modeling and simulation validation of the GFI and SST designs via state space modeling in a multi-scale simulation framework, as well as demonstration of stable and effective participation of these models in a centralized control scheme under phase imbalance. For converters, the SST design, analysis, and simulation are the primary contributions, though several novel derivations and analysis tools are also presented for the asymmetric half bridge and DAB.
ContributorsMongrain, Robert Scott (Author) / Ayyanar, Raja (Thesis advisor) / Pan, George (Committee member) / Qin, Jiangchao (Committee member) / Lei, Qin (Committee member) / Arizona State University (Publisher)
Created2019