Matching Items (6)

132898-Thumbnail Image.png

Analysis of Radiation Shielding for Spacecraft

Description

The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions

The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The project then uses MULASSIS, a Geant4 based radiation simulation tool, to analyze the effectiveness of water and polyethylene based radiation shields against proton radiation with an initial energy of 1 GeV. This specific spectrum of radiation is selected because it a component of GCR that has been shown by previous literature to pose a significant threat to humans on board spacecraft. The analysis of each material indicated that both would have to be several meters thick to adequately protect crew against the simulated radiation over a several year mission. Additionally, an analysis of the mass of a simple spacecraft model with different shield thicknesses showed that the mass would increase significantly with internal space. Thus, using either material as a shield would be expensive as a result of the cost of lifting a large amount of mass into orbit.

Contributors

Agent

Created

Date Created
2019-05

132733-Thumbnail Image.png

Reducing The Scale of Steam Generators in Pressurized Water Reactors

Description

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components

Nuclear power has recently experienced a resurgence in interest due to its ability to generate significant amounts of relatively clean energy. However, the overall size of nuclear power plants still poses a problem to future advancements. The bulkiness of components in the plant contribute to longer construction times, higher building and maintenance costs, and the isolation of nuclear plants from populated areas. The goal of this project was to analyze the thermal performance of nanocrystalline copper tantalum (NC Cu-Ta) inside the steam generator of a pressurized water reactor to see how much the size of these units could be reduced without affecting the amount of heat transferred through it. The analysis revealed that using this material, with its higher thermal conductivity than the traditional Inconel Alloy 600 that is typically used in steam generators, it is possible to reduce the height of a steam generator from 21 meters to about 18.6 meters, signifying a 11.6% reduction in height. This analysis also revealed a diminishing return that occurs with increasing the thermal conductivity on both reducing the required heat transfer area and increasing the overall heat transfer coefficient.

Contributors

Agent

Created

Date Created
2019-05

135891-Thumbnail Image.png

Nuclear Testing and Aftermath in the Pacific Islands: Pacific Islander, US, and Japanese Perspectives from Cold War to Present

Description

This paper explores how US Cold War nuclear testing in the Pacific Islands has been approached in three different regions \u2014affected Pacific Islands, the US, and Japan. Because the US has failed to adequately address its nuclear past in the

This paper explores how US Cold War nuclear testing in the Pacific Islands has been approached in three different regions \u2014affected Pacific Islands, the US, and Japan. Because the US has failed to adequately address its nuclear past in the Pacific Islands, and Pacific Islander narratives struggle to reach the international community on their own, my study considers the possibility of Pacific Islanders finding greater outlet for their perspectives within dominant Japanese narratives, which also feature nuclear memory. Whereas the US government has remained largely evasive and aloof about the consequences of its nuclear testing in the Pacific, Japan encourages active, anti-nuclear war memory that could be congruent with Pacific Islander interests. After examining historical events, surrounding context, and prevailing sentiments surrounding this issue in each region however, my study finds that even within Japanese narratives, Pacific Islander narratives can only go so far because of Japan's own nuclear power industry, its hierarchical relationship with the Pacific Islands, and Japan's strong ties to the US in what can be interpreted as enduring Cold War politics.

Contributors

Created

Date Created
2015-12

137095-Thumbnail Image.png

Thorium: Using Old Concepts to Address Problems in the Modern Energy Industry

Description

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233 and the thorium fuel cycle have failed to have significant presence in the field. Historically, nuclear energy development in the United States, and thorium development in particular, has been tied to the predominant societal outlook on the field, and thorium was only pursued seriously as an option during a period when nuclear energy was heavily favored, and resources seemed scarce. Recently, thorium-based energy has been experiencing a revival in interest in response to pollution concerns regarding fossil fuels. While public opinion is still wary of uranium, thorium-based designs could reduce reliance on fossil fuels while avoiding traditional drawbacks of nuclear energy. The thorium fuel cycle is more protected against proliferation, but is also much more expensive than the uranium-plutonium cycle in a typical reactor setup. Liquid-fueled molten salt reactor designs, however, bypass the prohibitive expense of U-233 refabrication by avoiding the stage entirely, keeping the chain reaction running with nothing but thorium input required. MSRs can use any fissile material as fuel, and are relatively safe to operate, due to passive features inherent to the design.

Contributors

Agent

Created

Date Created
2014-05

158542-Thumbnail Image.png

Path Integral Quantum Monte Carlo Method for Light Nuclei

Description

I describe the first continuous space nuclear path integral quantum Monte Carlo method, and calculate the ground state properties of light nuclei including Deuteron, Triton, Helium-3 and Helium-4, using both local chiral interaction up to next-to-next-to-leading-order and the Argonne $v_6'$

I describe the first continuous space nuclear path integral quantum Monte Carlo method, and calculate the ground state properties of light nuclei including Deuteron, Triton, Helium-3 and Helium-4, using both local chiral interaction up to next-to-next-to-leading-order and the Argonne $v_6'$ interaction. Compared with diffusion based quantum Monte Carlo methods such as Green's function Monte Carlo and auxiliary field diffusion Monte Carlo, path integral quantum Monte Carlo has the advantage that it can directly calculate the expectation value of operators without tradeoff, whether they commute with the Hamiltonian or not. For operators that commute with the Hamiltonian, e.g., the Hamiltonian itself, the path integral quantum Monte Carlo light-nuclei results agree with Green's function Monte Carlo and auxiliary field diffusion Monte Carlo results. For other operator expectations which are important to understand nuclear measurements but do not commute with the Hamiltonian and therefore cannot be accurately calculated by diffusion based quantum Monte Carlo methods without tradeoff, the path integral quantum Monte Carlo method gives reliable results. I show root-mean-square radii, one-particle number density distributions, and Euclidean response functions for single-nucleon couplings. I also systematically describe all the sampling algorithms used in this work, the strategies to make the computation efficient, the error estimations, and the details of the implementation of the code to perform calculations. This work can serve as a benchmark test for future calculations of larger nuclei or finite temperature nuclear matter using path integral quantum Monte Carlo.

Contributors

Agent

Created

Date Created
2020

158193-Thumbnail Image.png

Methodology for Identifying Inverter-based Renewable Generation Penetration Threshold in a Power System

Description

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based Resources (IBR), for that considers the voltage and frequency limits specified by the Western Electricity Coordinating Council (WECC) Transmission Planning (TPL) criteria, and the tie line power flow limits between the area-under-study and its neighbors under contingency conditions. A WECC power flow and dynamic file is analyzed and modified in this research to demonstrate the performance of the methodology. GE's Positive Sequence Load Flow (PSLF) software is used to conduct this research and Python was used to analyze the output data.

The thesis explains in detail how the system with 11% of IRG operated before conducting any adjustments (addition of IRG) and what procedures were modified to make the system run correctly. The adjustments made to the dynamic models are also explained in depth to give a clearer picture of how each adjustment affects the system performance. A list of proposed IRG units along with their locations were provided by SRP, a power utility in Arizona, which were to be integrated into the power flow and dynamic files. In the process of finding the maximum IRG penetration threshold, three sensitivities were also considered, namely, momentary cessation due to low voltages, transmission vs. distribution connected solar generation, and stalling of induction motors. Finally, the thesis discusses how the system reacts to the aforementioned modifications, and how IRG penetration threshold gets adjusted with regards to the different sensitivities applied to the system.

Contributors

Agent

Created

Date Created
2020