Matching Items (15)

136240-Thumbnail Image.png

Computational Analysis of Research in Mammalian Neocortical Neurogenesis

Description

Studies in neocortical neurogenesis have experienced an explosive growth since the early 2000s, measured by the increasing number of publications each year. I examine here the influence of Arnold Kriegstein

Studies in neocortical neurogenesis have experienced an explosive growth since the early 2000s, measured by the increasing number of publications each year. I examine here the influence of Arnold Kriegstein in the field using Topic Modeling, a set of algorithms that can be applied to a collection of texts to elucidate the central themes of said collection. Using a Java-based software called MALLET, I obtained data for his corpus, and compared it to the texts of other researchers in the field. This latter collection, which I dub "General Corpus", was separated by year from 2000 to 2014. I found that Kriegstein's most frequently discussed topic concerned highly unique terms such as GABA, glutamate, and receptor, which did not appear in any of the primary topics of the General Corpus. This was in contrast to my initial hypothesis that Kriegstein's importance stemmed from his examination of different phenomena that constitute the broader aspect of neocortical neurogenesis. I predicted that the terms in Kriegstein's primary topic would appear many times throughout the topics of the General Corpus, but it was not so, aside from the common ones such as neurons, cortical, and development. Taken in tandem with NIH Reporter data, these results suggest that Kriegstein obtains a large amount of research funding because his studies concern unique topics when compared to others in the field. The implications of these findings are especially relevant in a world where funding is becoming increasingly difficult to come by.

Contributors

Agent

Created

Date Created
  • 2015-05

134426-Thumbnail Image.png

Lipopolymer-Mediated Transgene Delivery to Human Stem Cells

Description

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and nonchemical delivery of genetic material, but often suffer from cytotoxicity and low efficiency. Novel aminoglycoside antibiotic-derived lipopolymers have been synthesized to mediate transgene delivery to human cells. These polymers are comprised of either paromomycin or apramycin crosslinked with glycerol diglycidylether and derivatized with stearoyl chloride in varying molar ratios. In this work, three previously identified target lipopolymers were screened against a library of human embryonic and induced pluripotent stem cell lines. Cells were transfected with a plasmid encoding green fluorescent protein (GFP) and expression was quantified with flow cytometry 48 hours after transfection. Transfection efficiency was evaluated between three distinct lipopolymers and four lipopolymer:DNA mass ratios. GFP expression was compared to that of cells transfected with commercially available chemical gene delivery reagent controls\u2014JetPEI, Lipofectamine, and Fugene\u2014at their recommended reagent:DNA ratios. Improved transgene expression in stem cell lines allows for improved research methods. Human stem cell-derived neurons that have been genetically manipulated to express phenotypic characteristics of aging can be utilized to model neurodegenerative diseases, elucidating information about these diseases that would be inaccessible in unmanipulated tissue.

Contributors

Agent

Created

Date Created
  • 2017-05

134451-Thumbnail Image.png

Engineering Self-Organizing Biliary Organoids from Human Induced Pluripotent Stem Cells

Description

Cholangiocytes, the epithelial cells of the bile duct, are the origin of cholangiopathies which often necessitate liver transplants. Current progress in generating functional biliary organoids show potential for modelling cholangiopathies

Cholangiocytes, the epithelial cells of the bile duct, are the origin of cholangiopathies which often necessitate liver transplants. Current progress in generating functional biliary organoids show potential for modelling cholangiopathies and validating therapeutic drugs. Organoids by groups Ogawa et al. and Sampaziotis et al. utilize soluble molecule induction, OP9 co-culture, and three-dimensional culture to achieve self-organizing tissues which express mature cholangiocyte markers and show cholangiocyte functionality. This thesis describes our efforts to establish a standard for functional PSC-derived bile duct tissues. By directing cell fate and patterning through external cues alone, we were able to produce CK19+ALB+ hepatoblast-like cells. These soluble molecule-induced cells also expressed EpCAM and CEBPA, suggesting the presence of early liver epithelial cells. However, inconsistent results and high levels of cell death with soluble molecule induction in early stages of differentiation prompted the development of a combinatory differentiation method which utilized multiple differentiation tools. We opted to combine transcription-factor triggered differentiation with soluble molecule-mediated differentiation to produce early biliary cells with the potential to develop into mature cholangiocytes. By combining genetic engineering through the activation of doxycycline-inducible GATA6 switch and microbead-mediated CXCR4 separation, we generated patterned tissues which expressed early biliary markers, CD146, CK19, and SOX9. In the future, three-dimensional cell culture and OP9 co-culture could improve our current results by facilitating 3D cellular self-organization and promoting NOTCH signaling for cholangiocyte maturation. Next steps for this research include optimizing media formulations, tracking gene expression over time, and testing the functionality of generated tissues.

Contributors

Agent

Created

Date Created
  • 2017-05

134621-Thumbnail Image.png

Stem Cell Growth Factor Supplementation: Efficacy of PRP and Prolotherapy Treatment Evidence

Description

the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative

the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy are individual treatments that were even suggested and used in combination with stem cell therapies. Prolotherapy predates PRP as a chemical irritant therapy originally used to sclerose tissues. Prolotherapy is meant to stimulate platelet derived growth factors release to improve tissue healing response. Prolotherapy shows negligible efficacy improvements over corticosteroids, but may have underlying side effects from being an irritant. PRP is a more modern therapy for improved healing. Speculations state initial use was in an open heart surgery to improve healing post-surgery. PRP is created via centrifugation of patient blood to isolate growth factors by removing serum and other biological components to increase platelet concentration. PRP is comparable to corticosteroid injections in efficacy, but as an autologous application, there are no side effects making it more advantageous. Growth factors induce healing response and reduce inflammation. Growth factors stimulate cell growth, proliferation, differentiation, and stimulate cellular response mechanism such as angiogenesis and mitogenesis. The growth factor stimulation of PRP and prolotherapy both assist stem cell proliferation. Additional research is needed to determine differential capacity to ensure multipotent stem cells regenerate the correct cell type from the increased differential capacity offered by growth factor recruitment. The application of combination therapy for stem cells is unsubstantiated and applications violate FDA ‘minimal manipulation’ guidelines.

Contributors

Agent

Created

Date Created
  • 2017-05

133892-Thumbnail Image.png

Engineering a Human Induced Pluripotent Stem Cell (hiPSC)-Based Model of Alzheimer's Disease

Description

Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms

Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related mutations, have provided important insights into the disease. However, these models do not display important disease-related pathologies and have been limited in their ability to model the complex genetics associated with SAD.

Advances in cellular reprogramming, have enabled the generation of in vitro disease models that can be used to dissect disease mechanisms and evaluate potential therapeutics. To that end, efforts by many groups, including the Brafman laboratory, to generated patient-specific hiPSCs have demonstrated the promise of studying AD in a simplified and accessible system. However, neurons generated from these hiPSCs have shown some, but not all, of the early molecular and cellular hallmarks associated with the disease. Additionally, phenotypes and pathological hallmarks associated with later stages of the human disease have not been observed with current hiPSC-based systems. Further, disease relevant phenotypes in neurons generated from SAD hiPSCs have been highly variable or largely absent. Finally, the reprogramming process erases phenotypes associated with cellular aging and, as a result, iPSC-derived neurons more closely resemble fetal brain rather than adult brain.

It is well-established that in vivo cells reside within a complex 3-D microenvironment that plays a significant role in regulating cell behavior. Signaling and other cellular functions, such as gene expression and differentiation potential, differ in 3-D cultures compared with 2-D substrates. Nonetheless, previous studies using AD hiPSCs have relied on 2-D neuronal culture models that do not reflect the 3-D complexity of native brain tissue, and therefore, are unable to replicate all aspects of AD pathogenesis. Further, the reprogramming process erases cellular aging phenotypes. To address these limitations, this project aimed to develop bioengineering methods for the generation of 3-D organoid-based cultures that mimic in vivo cortical tissue, and to generate an inducible gene repression system to recapitulate cellular aging hallmarks.

Contributors

Agent

Created

Date Created
  • 2018-05

135560-Thumbnail Image.png

Identification and Analysis of For-Profit Stem Cell Clinics in the Phoenix Metropolitan Area

Description

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that

This thesis explores and analyzes the emergence of for-profit stem cell clinics in the United States, specifically in the Phoenix metropolitan area. Stem cell therapy is an emerging field that has great potential in preventing or treating a number of diseases. Certain companies are currently researching the application of stem cells as therapeutics. At present the FDA has only approved one stem cell-based product; however, there are a number of companies currently offering stem cell therapies. In the past five years, most news articles discussing these companies offering stem cell treatments talk of clinics in other countries. Recently, there seems to be a number of stem cell clinics appearing in the United States. Using a web search engine, fourteen stem cell clinics were identified and analyzed in the Phoenix metropolitan area. Each clinic was analyzed by their four key characteristics: business operations, stem cell types, stem cell isolation methods, and their position with the FDA. Based off my analysis, most of the identified clinics are located in Scottsdale or Phoenix. Some of these clinics even share the same location as another medical practice. Each of the fourteen clinics treat more than one type of health condition. The stem clinics make use of four stem cell types and three different isolation methods to obtain the stem cells. The doctors running these clinics almost always treat health conditions outside of their expertise. Some of these clinics even claim they are not subject to FDA regulation.

Contributors

Agent

Created

Date Created
  • 2016-05

132712-Thumbnail Image.png

Pathways for Regulating the Direct-to-Consumer Stem Cell Industry in the United States

Description

The direct-to-consumer (DTC) stem cell industry is a novel industry in the United States offering experimental stem cell treatments to patients with little regulatory oversight. The rapid expansion of this

The direct-to-consumer (DTC) stem cell industry is a novel industry in the United States offering experimental stem cell treatments to patients with little regulatory oversight. The rapid expansion of this industry over the last decade has drawn attention from a number of stakeholders, and there is heated debate about how the industry should be regulated in order to maintain patient safety and treatment efficacy while also promoting innovation. Since 2009, the U.S. Food and Drug Administration (FDA) has been the main regulatory agency within the DTC stem cell industry, but it has been criticized for not taking stricter action. To develop a better understanding of the regulatory landscape in the DTC stem cell industry, this study provides a thorough analysis of five effective regulatory pathways: Food & Drug Administration (FDA), Federal Trade Commission (FTC), litigation, state legislation, and state medical boards. The operation of these pathways as regulatory agencies separately and together provide a clearer picture of future regulation in the DTC stem cell industry.

Contributors

Agent

Created

Date Created
  • 2019-05

158125-Thumbnail Image.png

Increased Enrichment and Generation of Isogenic Lines Using a Transient Reporter for Editing Enrichment

Description

Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in

Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in vitro. CRISPR/Cas9 and base editing technologies have been of recent interest because of their ability to create single nucleotide edits at nearly any genomic sequence using a Cas9 protein and a guide RNA (sgRNA). Currently, there is no available phenotype to differentiate edited cells from unedited cells. Past research has employed fluorescent proteins bound to Cas9 proteins to attempt to enrich for edited cells, however, these methods are only reporters of transfection (RoT) and are no indicative of actual base-editing occurring. Thus, this study proposes a transient reporter for editing enrichment (TREE) and Cas9-mediated adenosine TREE (CasMasTREE) which use plasmids to co-transfect with CRISPR/Cas9 technologies to serve as an indicator of base-editing. Specifically, TREE features a blue fluorescent protein (BFP) mutant that, upon a C-T conversion, changes the emission spectrum to a green fluorescent protein (GFP). CasMasTREE features a mCherry and GFP protein separated by a stop codon which can be negated using an A-G conversion. By employing a sgRNA that targets one of the TREE plasmids and at least one genomic site, cells can be sorted for GFP(+) cells. Using these methods, base-edited isogenic hiPSC line generation using TREE (BIG-TREE) was created to generate isogenic hiPSC lines with AD-relevant edits. For example, BIG-TREE demonstrates the capability of converting Apolipoprotein E (APOE), a gene associated with AD-risk development, wildtype (3/3) into another isoform, APOE2/2, to create isogenic hiPSC lines. The capabilities of TREE are vast and can be applied to generate various models of diseases with specific genomic edits.

Contributors

Agent

Created

Date Created
  • 2020

152705-Thumbnail Image.png

The dissection of signaling cascades in neural stem cell proliferation & GBM promotion

Description

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation.

Contributors

Agent

Created

Date Created
  • 2014

158493-Thumbnail Image.png

Using Molecular, Cellular and Bioengineering Approaches Towards Understanding Muscle Stem Cell Biology

Description

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.

Contributors

Agent

Created

Date Created
  • 2020