Matching Items (3)
Filtering by

Clear all filters

156404-Thumbnail Image.png
Description
Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided

Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided recombinase protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 40bps is necessary for directing recombination. Using PCR and Sanger sequencing, we confirmed rCas9 targets DNA recombination. With further development we envision rCas9 becoming useful in the development of RNA-programmed genetic circuitry as well as high-specificity genome engineering.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Arizona State University (Publisher)
Created2018
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
187533-Thumbnail Image.png
Description
Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease

Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease and efficiency of CRISPR-Cas9 systems has enabled numerous technologies and DNA manipulations. Genome engineering in human cell lines is centered around the study of genetic contribution to disease phenotypes. However, canonical CRISPR-Cas9 systems are largely reliant on double stranded DNA breaks (DSBs). DSBs can induce unintended genomic changes including deletions and complex rearrangements. Likewise, DSBs can induce apoptosis and cell cycle arrest confounding applications of Cas9-based systems for disease modeling. Base editors are a novel class of nicking Cas9 engineered with a cytidine or adenosine deaminase. Base editors can install single letter DNA edits without DSBs. However, detecting single letter DNA edits is cumbersome, requiring onerous DNA isolation and sequencing, hampering experimental throughput. This document describes the creation of a fluorescent reporter system to detect Cytosine-to-Thymine (C-to-T) base editing. The fluorescent reporter utilizes an engineered blue fluorescent protein (BFP) that is converted to green fluorescent protein (GFP) upon targeted C-to-T conversion. The BFP-to-GFP conversion enables the creation of a strategy to isolate edited cell populations, termed Transient Reporter for Editing Enrichment (TREE). TREE increases the ease of optimizing base editor designs and assists in editing cell types recalcitrant to DNA editing. More recently, Prime editing has been demonstrated to introduce user defined DNA edits without the need for DSBs and donor DNA. Prime editing requires specialized prime editing guide RNAs (pegRNAs). pegRNAs are however difficult to manually design. This document describes the creation of a software tool: Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE). PINE-CONE rapidly designs pegRNAs based off basic edit information and will assist with synthetic biology and biomedical research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2023