Matching Items (3)
Filtering by

Clear all filters

136696-Thumbnail Image.png
Description
Bacteria have been shown to possess a large array of regulatory mechanisms to not just respond to a diverse array of environmental stresses, but to injurious artificial proteins as well. A previous investigation introduced DX, a man-made ATP sequestering protein into Escherichia coli (E. coli) which resulted in the formation

Bacteria have been shown to possess a large array of regulatory mechanisms to not just respond to a diverse array of environmental stresses, but to injurious artificial proteins as well. A previous investigation introduced DX, a man-made ATP sequestering protein into Escherichia coli (E. coli) which resulted in the formation of novel endoliposome structures and induced a viable but non-culturable state (VBNC) that was not easily reversed. It was hypothesized that the broadly conserved bacterial stringent response pathway may have been responsible for the observed phenotypic changes. With the goal of unveiling the molecular mechanism behind this novel response, changes in cellular morphology and physiology upon DX expression were assessed in a population of E. coli encoding a dysfunctional relA gene, one of the two genes controlling the induction of the stringent response. It was ultimately shown that RelA directly contributed to cellular filamentation, endoliposome structure formation, and the induction of a VBNC state. While the stringent response has been extensively shown to induce a VBNC state, to our knowledge, relA has not yet been shown to induce filamentation or coordinate the formation of endoliposome structures in bacteria. As the stringent response has been shown to be increasingly involved in antibiotic tolerance, this study provided an exciting opportunity to further characterize this adaptive response pathway to aid in the future development of novel therapeutics. In addition to this, this study continued to highlight that the DX protein may serve one of the first tools to allow for the direct selection of bacteria in a VBNC state by morphologically distinguishing non-culturable cells through cellular filamentation.
ContributorsFrost, Fredrick Charles (Author) / Chaput, John (Thesis director) / Wachter, Rebekka (Committee member) / Korch, Shaleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132748-Thumbnail Image.png
Description
Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful reality. Engineered CRISPR based transcriptional regulators have enabled researchers to

Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful reality. Engineered CRISPR based transcriptional regulators have enabled researchers to perturb endogenous gene expression in vivo, allowing for the therapeutic reprogramming of cell and tissue behavior. However, for this technology to be of maximal use, a variety of technological hurdles still need to be addressed. Here, we discuss recent advances and integrative strategies that can help pave the way towards a new class of transcriptional therapeutics.
ContributorsPandelakis, Matthew (Author) / Ebrahimkhani, Mohammad (Thesis director) / Kiani, Samira (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05