Matching Items (14)
Filtering by

Clear all filters

151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
149983-Thumbnail Image.png
Description
Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life

Synthetic biology is constantly evolving as new ideas are incorporated into this increasingly flexible field. It incorporates the engineering of life with standard genetic parts and methods; new organisms with new genomes; expansion of life to include new components, capabilities, and chemistries; and even completely synthetic organisms that mimic life while being composed of non-living matter. We have introduced a new paradigm of synthetic biology that melds the methods of in vitro evolution with the goals and philosophy of synthetic biology. The Family B proteins represent the first de novo evolved natively folded proteins to be developed with increasingly powerful tools of molecular evolution. These proteins are folded and functional, composed of the 20 canonical amino acids, and in many ways resemble natural proteins. However, their evolutionary history is quite different from natural proteins, as it did not involve a cellular environment. In this study, we examine the properties of DX, one of the Family B proteins that have been evolutionarily optimized for folding stability. Described in chapter 2 is an investigation into the primitive catalytic properties of DX, which seems to have evolved a serendipitous ATPase activity in addition to its selected ATP binding activity. In chapters 3 and 4 we express the DX gene in E. coli cells and observe massive changes in cell morphology, biochemistry, and life cycle. Exposure to DX activates several defense systems in E. coli, including filamentation, cytoplasmic segregation, and reversion to a viable but non-culturable state. We examined these phenotypes in detail and present a model that accounts for how DX causes such a rearrangement of the cell.
ContributorsStomel, Joshua (Author) / Chaput, John C (Thesis advisor) / Korch, Shaleen (Committee member) / Roberson, Robert (Committee member) / Ghirlanda, Gionvanna (Committee member) / Arizona State University (Publisher)
Created2011
154018-Thumbnail Image.png
Description
Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.
ContributorsDunn, Matthew Ryan (Author) / Chaput, John C (Thesis advisor) / LaBaer, Joshua (Committee member) / Lake, Douglas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2015
156623-Thumbnail Image.png
Description
Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting,

Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting, and controlling gene transcriptional networks are presented and applied to two synthetic gene network contexts. First, this engineering approach is used to improve the function of the guide ribonucleic acid (gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is developed to more clearly observe gRNA dynamics and aid design. It is shown that through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be strong enough to exhibit measurable cascading behavior, previously only shown in RNA Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to achieve precise fractional differentiation of a population. Mathematical methods are employed to predict and understand the observed behavior, and metrics for analyzing and quantifying similar differentiation kinetics are presented. Through careful mathematical analysis and simulation, coupled with experimental data, two methods for achieving ratio control are presented, with the optimal schema for any application being dependent on the noisiness of the system under study. Together, these studies push the boundaries of gene network control, with potential applications in stem cell differentiation, therapeutics, and bio-production.
ContributorsMenn, David J (Author) / Wang, Xiao (Thesis advisor) / Kiani, Samira (Committee member) / Haynes, Karmella (Committee member) / Nielsen, David (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2018
157062-Thumbnail Image.png
Description
Synthetic manipulation of chromatin dynamics has applications for medicine, agriculture, and biotechnology. However, progress in this area requires the identification of design rules for engineering chromatin systems. In this thesis, I discuss research that has elucidated the intrinsic properties of histone binding proteins (HBP), and apply this knowledge to engineer

Synthetic manipulation of chromatin dynamics has applications for medicine, agriculture, and biotechnology. However, progress in this area requires the identification of design rules for engineering chromatin systems. In this thesis, I discuss research that has elucidated the intrinsic properties of histone binding proteins (HBP), and apply this knowledge to engineer novel chromatin binding effectors. Results from the experiments described herein demonstrate that the histone binding domain from chromobox protein homolog 8 (CBX8) is portable and can be customized to alter its endogenous function. First, I developed an assay to identify engineered fusion proteins that bind histone post translational modifications (PTMs) in vitro and regulate genes near the same histone PTMs in living cells. This assay will be useful for assaying the function of synthetic histone PTM-binding actuators and probes. Next, I investigated the activity of a novel, dual histone PTM binding domain regulator called Pc2TF. I characterized Pc2TF in vitro and in cells and show it has enhanced binding and transcriptional activation compared to a single binding domain fusion called Polycomb Transcription Factor (PcTF). These results indicate that valency can be used to tune the activity of synthetic histone-binding transcriptional regulators. Then, I report the delivery of PcTF fused to a cell penetrating peptide (CPP) TAT, called CP-PcTF. I treated 2D U-2 OS bone cancer cells with CP-PcTF, followed by RNA sequencing to identify genes regulated by CP-PcTF. I also showed that 3D spheroids treated with CP-PcTF show delayed growth. This preliminary work demonstrated that an epigenetic effector fused to a CPP can enable entry and regulation of genes in U-2 OS cells through DNA independent interactions. Finally, I described and validated a new screening method that combines the versatility of in vitro transcription and translation (IVTT) expressed protein coupled with the histone tail microarrays. Using Pc2TF as an example, I demonstrated that this assay is capable of determining binding and specificity of a synthetic HBP. I conclude by outlining future work toward engineering HBPs using techniques such as directed evolution and rational design. In conclusion, this work outlines a foundation to engineer and deliver synthetic chromatin effectors.
ContributorsTekel, Stefan (Author) / Haynes, Karmella (Thesis advisor) / Mills, Jeremy (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2019
136265-Thumbnail Image.png
Description
Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes

Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes & Silver 2011. PcTF variants have been constructed via TypeIIS assembly to further investigate this ability to reactive transgenes. Expression in mammalian cells was confirmed via fluorescence microscopy and red fluorescent protein (RFP) expression in cell lysate. Examination of any variation in conferment of binding strength of homologous Polycomb chromodomains (PCDs) to its trimethylated lysine residue target on histone three (H3K27me3) was investigated using a thermal shift assay. Results indicate that PcTF may not be a suitable protein for surveying with SYPRO Orange, a dye that produces a detectable signal when exposed to the hydrophobic domains of the melting protein. A cell line with inducible silencing of a chemiluminescent protein was used to determine the effects PcTF variants had on gene reactivation. Results show down-regulation of the target reporter gene. We propose this may be due to PcTF not binding to its target; this would cause PcTF to deplete transcriptional machinery in the nucleus. Alternatively, the CMV promoter could be sequestering transcriptional machinery in its hyperactive transcription of PcTF leading to widespread down-regulation. Finally, the activation domain used may not be appropriate for this cell type. Future PcTF variants will address these hypotheses by including multiple Polycomb chromodomains (PCDs) to alter the binding dynamics of PcTF to its target, and by incorporating alternative promoters and activation domains.
ContributorsGardner, Cameron Lee (Author) / Haynes, Karmella (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137224-Thumbnail Image.png
Description
The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here

The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here we employ engineered variants of CRISPR systems in proof-of-principle experiments demonstrating the ability of CRISPR-Cas derived single-DNA-strand cutting enzymes (nickases) to direct host-cell genomic recombination. E.coli is generally regarded as a poorly recombinogenic host with double-stranded DNA breaks being highly lethal. However, CRISPR-guided nickase systems can be easily programmed to make very precise, non-lethal, incisions in genomic regions directing both single reporter gene and larger-scale recombination events deleting up to 36 genes. Genome integrated repetitive elements of variable sizes can be employed as sites for CRISPR induced recombination. We project that single-stranded based editing methodologies can be employed alongside preexisting genome engineering techniques to assist and expedite metabolic engineering and minimalized genome research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis director) / Haynes, Karmella (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05