Matching Items (10)

Filtering by

Clear all filters

133722-Thumbnail Image.png

Identification of aromatic-inducible promoters and heterologous biosensors as tuning elements for styrene production in E. coli

Description

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pum

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.

Contributors

Agent

Created

Date Created
2018-05

132748-Thumbnail Image.png

CRISPR Based Synthetic Transcription Factors: The Future of Transcriptional Therapeutics

Description

Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful

Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful reality. Engineered CRISPR based transcriptional regulators have enabled researchers to perturb endogenous gene expression in vivo, allowing for the therapeutic reprogramming of cell and tissue behavior. However, for this technology to be of maximal use, a variety of technological hurdles still need to be addressed. Here, we discuss recent advances and integrative strategies that can help pave the way towards a new class of transcriptional therapeutics.

Contributors

Agent

Created

Date Created
2019-05

135297-Thumbnail Image.png

A Synthetic Gene for Detecting Epigenetic Changes in Live Human Cells

Description

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.

Contributors

Agent

Created

Date Created
2016-05

136118-Thumbnail Image.png

Validating a Model for Catalytic Function in 9°N Polymerase Based on Structural Conservation

Description

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.

Contributors

Agent

Created

Date Created
2015-05

136133-Thumbnail Image.png

Using Natural Diversity of Quorum Sensing to Expand the Synthetic Biology Toolbox

Description

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.

Contributors

Created

Date Created
2015-05

137224-Thumbnail Image.png

RNA-Guided Modification of Synthetic Gene Networks Using CRISPR-Cas Systems

Description

The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for

The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here we employ engineered variants of CRISPR systems in proof-of-principle experiments demonstrating the ability of CRISPR-Cas derived single-DNA-strand cutting enzymes (nickases) to direct host-cell genomic recombination. E.coli is generally regarded as a poorly recombinogenic host with double-stranded DNA breaks being highly lethal. However, CRISPR-guided nickase systems can be easily programmed to make very precise, non-lethal, incisions in genomic regions directing both single reporter gene and larger-scale recombination events deleting up to 36 genes. Genome integrated repetitive elements of variable sizes can be employed as sites for CRISPR induced recombination. We project that single-stranded based editing methodologies can be employed alongside preexisting genome engineering techniques to assist and expedite metabolic engineering and minimalized genome research.

Contributors

Agent

Created

Date Created
2014-05

Testing and Regulation of Genetically Engineered Biological Containment Techniques

Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Contributors

Agent

Created

Date Created
2022-05

165211-Thumbnail Image.png

Dilly Final Project (Spring 2022)

Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Contributors

Agent

Created

Date Created
2022-05

165210-Thumbnail Image.png

Containment Flowchart With Links

Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Contributors

Agent

Created

Date Created
2022-05

165212-Thumbnail Image.png

Literature Review and Definitions

Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

Contributors

Agent

Created

Date Created
2022-05