Matching Items (16)
Filtering by

Clear all filters

156404-Thumbnail Image.png
Description
Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided

Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided recombinase protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 40bps is necessary for directing recombination. Using PCR and Sanger sequencing, we confirmed rCas9 targets DNA recombination. With further development we envision rCas9 becoming useful in the development of RNA-programmed genetic circuitry as well as high-specificity genome engineering.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Arizona State University (Publisher)
Created2018
156623-Thumbnail Image.png
Description
Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting,

Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting, and controlling gene transcriptional networks are presented and applied to two synthetic gene network contexts. First, this engineering approach is used to improve the function of the guide ribonucleic acid (gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is developed to more clearly observe gRNA dynamics and aid design. It is shown that through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be strong enough to exhibit measurable cascading behavior, previously only shown in RNA Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to achieve precise fractional differentiation of a population. Mathematical methods are employed to predict and understand the observed behavior, and metrics for analyzing and quantifying similar differentiation kinetics are presented. Through careful mathematical analysis and simulation, coupled with experimental data, two methods for achieving ratio control are presented, with the optimal schema for any application being dependent on the noisiness of the system under study. Together, these studies push the boundaries of gene network control, with potential applications in stem cell differentiation, therapeutics, and bio-production.
ContributorsMenn, David J (Author) / Wang, Xiao (Thesis advisor) / Kiani, Samira (Committee member) / Haynes, Karmella (Committee member) / Nielsen, David (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2018
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133856-Thumbnail Image.png
Description
Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to

Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to demonstrate reliable regulators which are programmable and specific, yet also allow for a high dynamic range of control. Inspired by the characteristics of the RNA toehold switch in E. coli, this project attempts utilize artificial introns and complementary trans-acting RNAs for gene regulation in a eukaryote host, S. cerevisiae. Following modification to an artificial intron, splicing control with RNA hairpins was demonstrated. Temperature shifts led to increased protein production likely due to increased splicing due to hairpin loosening. Progress is underway to demonstrate trans-acting RNA interaction to control splicing. With continued development, we hope to provide a programmable, specific, and effective means for translational gene regulation in S. cerevisae.
ContributorsDorr, Brandon Arthur (Author) / Wang, Xiao (Thesis director) / Green, Alexander (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137224-Thumbnail Image.png
Description
The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here

The ability to edit chromosomal regions is an important tool for the study of gene function and the ability to engineer synthetic gene networks. CRISPR-Cas systems, a bacterial RNA-guided immune system against foreign nucleic acids, have recently been engineered for a plethora of genome engineering and transcriptional regulation applications. Here we employ engineered variants of CRISPR systems in proof-of-principle experiments demonstrating the ability of CRISPR-Cas derived single-DNA-strand cutting enzymes (nickases) to direct host-cell genomic recombination. E.coli is generally regarded as a poorly recombinogenic host with double-stranded DNA breaks being highly lethal. However, CRISPR-guided nickase systems can be easily programmed to make very precise, non-lethal, incisions in genomic regions directing both single reporter gene and larger-scale recombination events deleting up to 36 genes. Genome integrated repetitive elements of variable sizes can be employed as sites for CRISPR induced recombination. We project that single-stranded based editing methodologies can be employed alongside preexisting genome engineering techniques to assist and expedite metabolic engineering and minimalized genome research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis director) / Haynes, Karmella (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
154562-Thumbnail Image.png
Description
Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still

Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still many challenges in synthetic biology. For example, many natural biological processes are poorly understood, and these could be more thoroughly studied through model synthetic gene networks. Additionally, since synthetic biology applications may have numerous design constraints, more inducer systems should be developed to satisfy different requirements for genetic design.

This thesis covers two topics. First, I attempt to generate stochastic resonance (SR) in a biological system. Synthetic bistable systems were chosen because the inducer range in which they exhibit bistability can satisfy one of the three requirements of SR: a weak periodic force is unable to make the transition between states happen. I synthesized several different bistable systems, including toggle switches and self-activators, to select systems matching another requirement: the system has a clear threshold between the two energy states. Their bistability was verified and characterized. At the same time, I attempted to figure out the third requirement for SR – an effective noise serving as the stochastic force – through one of the most widespread toggles, the mutual inhibition toggle, in both yeast and E. coli. A mathematic model for SR was written and adjusted.

Secondly, I began work on designing a new genetic system capable of responding to pulsed magnetic fields. The operators responding to pulsed magnetic stimuli in the rpoH promoter were extracted and reorganized. Different versions of the rpoH promoter were generated and tested, and their varying responsiveness to magnetic fields was recorded. In order to improve efficiency and produce better operators, a directed evolution method was applied with the help of a CRISPR-dCas9 nicking system. The best performing promoters thus far show a five-fold difference in gene expression between trials with and without the magnetic field.
ContributorsHu, Hao (Author) / Wang, Xiao (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2016
155367-Thumbnail Image.png
Description
Neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis are marked by the loss of different types of neurons and glial cells in the central nervous system (CNS). Human Pluripotent Stem Cell (hPSC)-derived Neural Progenitor Cells (hNPCs) have the ability to self-renew indefinitely and to differentiate into

Neurodegenerative diseases such as Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis are marked by the loss of different types of neurons and glial cells in the central nervous system (CNS). Human Pluripotent Stem Cell (hPSC)-derived Neural Progenitor Cells (hNPCs) have the ability to self-renew indefinitely and to differentiate into various cell types of the CNS. HNPCs can be used in cell based therapies and have the potential to reverse or arrest neurodegeneration and to replace lost neurons and glial cells. However, the lack of completely defined, scalable systems to culture these cells, limits their therapeutic and clinical applications. In a previous study, a completely defined, robust, synthetic peptide- a Vitronectin Derived Peptide (VDP) that supports the long term expansion and differentiation of various embryonic and induced pluripotent stem cell (hESC/hIPSC) derived hNPC lines on two dimensional (2D) tissue culture plates was identified. In this study, the culture of hNPCs was scaled up using VDP coated microcarriers (MC). VDP MC were able to support the long term expansion of hESC and hiPSC derived hNPCs over multiple passages and supported higher fold changes in cell densities, compared to VDP coated 2D surfaces. VDP MC also showed the ability to support the neuronal differentiation of hNPCs, and produced mature neurons expressing several neuronal, neurotransmitter and cortical markers. Additionally, alzheimer’s disease (AD) relevant phenotypes were studied in patient hIPSC derived hNPCs cultured on laminin MC to assess if the MC culture system could be used for disease modelling and drug screening. Finally, a microcarrier based bioreactor system was developed for the large scale expansion of hNPCs, exhibiting more than a five-fold change in cell density and supporting more than 100 million hNPCs in culture. Thus, the development of a xeno-free, scalable system allows hNPC culture under standard and reproducible conditions in quantities required for therapeutic and clinical applications.
ContributorsRajaram Srinivasan, Gayathri (Author) / Brafman, David (Thesis advisor) / Wang, Xiao (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2017
189326-Thumbnail Image.png
Description
Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these

Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these systems function, but also have lent enough predictive power to aid in the forward-engineering of synthetic constructs. However, progress has been impeded by several modes of context-dependence unique to biological and biochemical systems that are not seen in traditional engineering disciplines, resulting in the need for lengthy design-build-test cycles before functional prototypes are generated.In this work, two of these universal modes of context dependence – resource competition and growth feedback –their effects on synthetic gene circuits and potential control mechanisms, are studied and characterized. Results demonstrate that a novel competitive control architecture can be utilized to mitigate the effects of winner-take-all resource competition (a form of context dependence where distinct gene modules influence each other by competing over a shared pool of transcriptional/translational resources) in synthetic gene circuits and restore circuits to their intended function. Application of the fluctuation-dissipation theorem and rigorous stochastic simulations demonstrate that realistic resource constraints present in cells at the transcriptional and translational levels influence noise in gene circuits in a nonmonotonic fashion, either increasing or decreasing noise depending on the transcriptional/translational capacity. Growth feedback on the other hand links circuit function to cellular growth rate via increased protein dilution rate during exponential growth phase. This in turn can result in the collapse of bistable gene circuits as the accelerated dilution rate forces switches in a high stable state to fall to a low stable state. Mathematical modelling and experimental data demonstrate that application of repressive links can insulate sensitive parts of gene circuits against growth-fluctuations and can in turn increase the robustness of multistable circuits in growth contexts. The results presented in this work aid in the accumulation of understanding of biological and biochemical context dependence, and corresponding control strategies and design principles engineers can utilize to mitigate these effects.
ContributorsStone, Austin (Author) / Tian, Xiao-jun (Thesis advisor) / Wang, Xiao (Committee member) / Smith, Barbara (Committee member) / Kuang, Yang (Committee member) / Cheng, Albert (Committee member) / Arizona State University (Publisher)
Created2023
156541-Thumbnail Image.png
Description
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug screening, or patient specific disease modeling. Human induced pluripotent stem cells (hiPSC)-derived neural progenitor cells (hNPCs) have the ability to self-renew indefinitely and differentiate into the various neuronal and glial cell types of the CNS. In order to realize the potential of hNPCs, it is necessary to develop a xeno-free scalable platform for effective expansion and differentiation. Previous work in the Brafman lab led to the engineering of a chemically defined substrate—vitronectin derived peptide (VDP), which allows for the long-term expansion and differentiation of hNPCs. In this work, we use this substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Finally, VDP was shown to support the differentiation of hNPCs into functional astrocytes. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their derivatives in quantities necessary for basic and translational applications.
ContributorsMorgan, Daylin (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2018
187533-Thumbnail Image.png
Description
Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease

Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease and efficiency of CRISPR-Cas9 systems has enabled numerous technologies and DNA manipulations. Genome engineering in human cell lines is centered around the study of genetic contribution to disease phenotypes. However, canonical CRISPR-Cas9 systems are largely reliant on double stranded DNA breaks (DSBs). DSBs can induce unintended genomic changes including deletions and complex rearrangements. Likewise, DSBs can induce apoptosis and cell cycle arrest confounding applications of Cas9-based systems for disease modeling. Base editors are a novel class of nicking Cas9 engineered with a cytidine or adenosine deaminase. Base editors can install single letter DNA edits without DSBs. However, detecting single letter DNA edits is cumbersome, requiring onerous DNA isolation and sequencing, hampering experimental throughput. This document describes the creation of a fluorescent reporter system to detect Cytosine-to-Thymine (C-to-T) base editing. The fluorescent reporter utilizes an engineered blue fluorescent protein (BFP) that is converted to green fluorescent protein (GFP) upon targeted C-to-T conversion. The BFP-to-GFP conversion enables the creation of a strategy to isolate edited cell populations, termed Transient Reporter for Editing Enrichment (TREE). TREE increases the ease of optimizing base editor designs and assists in editing cell types recalcitrant to DNA editing. More recently, Prime editing has been demonstrated to introduce user defined DNA edits without the need for DSBs and donor DNA. Prime editing requires specialized prime editing guide RNAs (pegRNAs). pegRNAs are however difficult to manually design. This document describes the creation of a software tool: Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE). PINE-CONE rapidly designs pegRNAs based off basic edit information and will assist with synthetic biology and biomedical research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2023