Matching Items (11)
Filtering by

Clear all filters

136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133856-Thumbnail Image.png
Description
Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to

Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to demonstrate reliable regulators which are programmable and specific, yet also allow for a high dynamic range of control. Inspired by the characteristics of the RNA toehold switch in E. coli, this project attempts utilize artificial introns and complementary trans-acting RNAs for gene regulation in a eukaryote host, S. cerevisiae. Following modification to an artificial intron, splicing control with RNA hairpins was demonstrated. Temperature shifts led to increased protein production likely due to increased splicing due to hairpin loosening. Progress is underway to demonstrate trans-acting RNA interaction to control splicing. With continued development, we hope to provide a programmable, specific, and effective means for translational gene regulation in S. cerevisae.
ContributorsDorr, Brandon Arthur (Author) / Wang, Xiao (Thesis director) / Green, Alexander (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the

Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the answers to some core questions that have plagued scientists and philosophers alike while entertaining its readers with a punchy, character-driven narrative.
ContributorsMansfield, Izaac (Author) / Finn, Ed (Thesis director) / Frow, Emma (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School for the Future of Innovation in Society (Contributor)
Created2023-05
Description
Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.
ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
165210-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165211-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165212-Thumbnail Image.png
Description

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific

Industries and research utilizing genetically-engineered organisms are often subject to strict containment requirements such as physical isolation or specialized equipment to prevent an unintended escape. A relatively new field of research looks for ways to engineer intrinsic containment techniques- genetic safeguards that prevent an organism from surviving outside of specific conditions. As interest in this field has grown over the last few decades, researchers in molecular and synthetic biology have discovered many novel ways to accomplish this containment, but the current literature faces some ambiguity and overlap in the ways they describe various biocontainment methods. Additionally, the way publications report the robustness of the techniques they test is inconsistent, making it uncertain how regulators could assess the safety and efficacy of these methods if they are eventually to be used in practical, consumer applications. This project organizes and clarifies the descriptions of these techniques within an interactive flowchart, linking to definitions and references to publications on each within an Excel table. For each reference, variables such as the containment approach, testing methods, and results reported are compiled, to illustrate the varying degrees to which these techniques are tested.

ContributorsDilly, Leon (Author) / Frow, Emma (Thesis director) / Vogel, Kathleen (Committee member) / Gillum, David (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
158097-Thumbnail Image.png
Description
Over the last half century, global healthcare practices have increasingly relied on technological interventions for the detection, prevention, and treatment of disability and disease. As these technologies become routinized and normalized into medicine, the social and political dimensions require substantial consideration. Such consideration is particularly critical in the context of

Over the last half century, global healthcare practices have increasingly relied on technological interventions for the detection, prevention, and treatment of disability and disease. As these technologies become routinized and normalized into medicine, the social and political dimensions require substantial consideration. Such consideration is particularly critical in the context of ableism, in which bodily and cognitive differences such as disabilities are perceived as deviance and demand intervention. Further, neoliberalism, with its overwhelming tendency to privatize and individualize, creates conditions under which social systems abdicate responsibility for social issues such as ableism, shifting accountability onto individuals to prevent or mitigate difference through individualized means.

It is in this context that this dissertation, informed by critical disability studies and feminist science and technology studies, examines the understanding and enactment of disability and responsibility in relation to biomedical technologies. I draw from qualitative empirical data from three distinct case studies, each focused on a different biomedical technology: prenatal genetic screening and diagnosis, deep brain stimulation, and do-it-yourself artificial pancreas systems. Analyzing semi-structured interviews and primary documents through an inductive framework that takes up elements of Grounded Theory and hermeneutic phenomenology, this research demonstrates a series of tensions. As disability becomes increasingly associated with discrete biological characteristics and medical professionals claim a growing authority over disabled bodyminds, users of these technologies are caught in a double bind of personal responsibility and epistemic invalidation. Technologies, however, do not occupy either exclusively oppressive or liberatory roles. Rather, they are used with full acknowledgement of their role in perpetuating medical authority and neoliberal paradigms as well as their individual benefit. Experiential and embodied knowledge, particular when in tension with clinical knowledge, is invalidated as a transgression of expert authority. To reject these invalidations, communities cohering around subaltern knowledges emerge in resistance to the mismatched priorities and expectations of medical authority, creating space for alternative disabled imaginaries.
ContributorsMonteleone, Rebecca (Author) / Fonow, Mary Margaret (Thesis advisor) / Ross, Heather (Committee member) / Frow, Emma (Committee member) / Michael, Katina (Committee member) / Arizona State University (Publisher)
Created2020
157621-Thumbnail Image.png
Description
The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large

The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large libraries to be generated through in silico design. This dissertation studies two different approaches for initiating interactions between RNA molecules to implement RNA-based components that achieve translational regulation. First, single-stranded domains known as toeholds were employed for detection of the highly prevalent foodborne pathogen norovirus. Toehold switch riboregulators activated by trigger RNAs from the norovirus RNA genome are designed, validated, and coupled with paper-based cell-free transcription-translation systems. Integration of paper-based reactions with synbody enrichment and isothermal RNA amplification enables as few as 160 copies/mL of norovirus from clinical samples to be detected in reactions that do not require sophisticated equipment and can be read directly by eye. Second, a new type of riboregulator that initiates RNA-RNA interactions through the loop portions of RNA stem-loop structures was developed. These loop-initiated RNA activators (LIRAs) provide multiple advantages compared to toehold-based riboregulators, exhibiting ultralow signal leakage in vivo, lacking any trigger RNA sequence constraints, and appending no additional residues to the output protein. Harnessing LIRAs as modular parts, logic gates that exploit loop-mediated control of mRNA folding state to implement AND and OR operations with up to three sequence-independent input RNAs were constructed. LIRA circuits can also be ported to paper-based cell-free reactions to implement portable systems with molecular computing and sensing capabilities. LIRAs can detect RNAs from a variety of different pathogens, such as HIV, Zika, dengue, yellow fever, and norovirus, and after coupling to isothermal amplification reactions, provide visible test results down to concentrations of 20 aM (12 RNA copies/µL). And the logic functionality of LIRA circuits can be used to specifically identify different HIV strains and influenza A subtypes. These findings demonstrate that toehold- and loop-mediated RNA-RNA interactions are both powerful strategies for implementing RNA-based computing systems for intracellular and diagnostic applications.
ContributorsMA, DUO (Author) / Green, Alexander (Thesis advisor) / Mangone, Marco (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2019
158747-Thumbnail Image.png
Description
Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and

Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and has been largely applied in gene circuit engineering. In this work, the effect of adjacent genes and noncoding regions are systematically investigated through the construction of batteries of gene circuits in diverse scenarios. Data-driven analysis yields a protein expression metric that strongly correlates with the features of adjacent transcriptional regions (ATRs). This novel mathematical tool helps the guide for circuit construction and has the implication for the design of synthetic ATRs to tune gene expression, illustrating its potential to facilitate engineering complex gene networks. The ability to tune RNA dynamics is greatly needed for biotech applications, including therapeutics and diagnostics. Diverse methods have been developed to tune gene expression through transcriptional or translational manipulation. Control of RNA stability/degradation is often overlooked and can be the lightweight alternative to regulate protein yields. To further extend the utility of engineered ATRs to regulate gene expression, a library of RNA modules named degradation-tuning RNAs (dtRNAs) are designed with the ability to form specific 5’ secondary structures prior to RBS. These modules can modulate transcript stability while having a minimal interference on translation initiation. Optimization of their functional structural features enables gene expression level to be tuned over a wide dynamic range. These engineered dtRNAs are capable of regulating gene circuit dynamics as well as noncoding RNA levels and can be further expanded into cell-free system for gene expression control in vitro. Finally, integrating dtRNA with synthetic toehold sensor enables improved paper-based viral diagnostics, illustrating the potential of using synthetic dtRNAs for biomedical applications.
ContributorsZhang, Qi (Author) / Wang, Xiao (Thesis advisor) / Green, Alexander (Committee member) / Brafman, David (Committee member) / Tian, Xiaojun (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2020