Matching Items (14)
Filtering by

Clear all filters

157062-Thumbnail Image.png
Description
Synthetic manipulation of chromatin dynamics has applications for medicine, agriculture, and biotechnology. However, progress in this area requires the identification of design rules for engineering chromatin systems. In this thesis, I discuss research that has elucidated the intrinsic properties of histone binding proteins (HBP), and apply this knowledge to engineer

Synthetic manipulation of chromatin dynamics has applications for medicine, agriculture, and biotechnology. However, progress in this area requires the identification of design rules for engineering chromatin systems. In this thesis, I discuss research that has elucidated the intrinsic properties of histone binding proteins (HBP), and apply this knowledge to engineer novel chromatin binding effectors. Results from the experiments described herein demonstrate that the histone binding domain from chromobox protein homolog 8 (CBX8) is portable and can be customized to alter its endogenous function. First, I developed an assay to identify engineered fusion proteins that bind histone post translational modifications (PTMs) in vitro and regulate genes near the same histone PTMs in living cells. This assay will be useful for assaying the function of synthetic histone PTM-binding actuators and probes. Next, I investigated the activity of a novel, dual histone PTM binding domain regulator called Pc2TF. I characterized Pc2TF in vitro and in cells and show it has enhanced binding and transcriptional activation compared to a single binding domain fusion called Polycomb Transcription Factor (PcTF). These results indicate that valency can be used to tune the activity of synthetic histone-binding transcriptional regulators. Then, I report the delivery of PcTF fused to a cell penetrating peptide (CPP) TAT, called CP-PcTF. I treated 2D U-2 OS bone cancer cells with CP-PcTF, followed by RNA sequencing to identify genes regulated by CP-PcTF. I also showed that 3D spheroids treated with CP-PcTF show delayed growth. This preliminary work demonstrated that an epigenetic effector fused to a CPP can enable entry and regulation of genes in U-2 OS cells through DNA independent interactions. Finally, I described and validated a new screening method that combines the versatility of in vitro transcription and translation (IVTT) expressed protein coupled with the histone tail microarrays. Using Pc2TF as an example, I demonstrated that this assay is capable of determining binding and specificity of a synthetic HBP. I conclude by outlining future work toward engineering HBPs using techniques such as directed evolution and rational design. In conclusion, this work outlines a foundation to engineer and deliver synthetic chromatin effectors.
ContributorsTekel, Stefan (Author) / Haynes, Karmella (Thesis advisor) / Mills, Jeremy (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2019
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
154562-Thumbnail Image.png
Description
Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still

Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still many challenges in synthetic biology. For example, many natural biological processes are poorly understood, and these could be more thoroughly studied through model synthetic gene networks. Additionally, since synthetic biology applications may have numerous design constraints, more inducer systems should be developed to satisfy different requirements for genetic design.

This thesis covers two topics. First, I attempt to generate stochastic resonance (SR) in a biological system. Synthetic bistable systems were chosen because the inducer range in which they exhibit bistability can satisfy one of the three requirements of SR: a weak periodic force is unable to make the transition between states happen. I synthesized several different bistable systems, including toggle switches and self-activators, to select systems matching another requirement: the system has a clear threshold between the two energy states. Their bistability was verified and characterized. At the same time, I attempted to figure out the third requirement for SR – an effective noise serving as the stochastic force – through one of the most widespread toggles, the mutual inhibition toggle, in both yeast and E. coli. A mathematic model for SR was written and adjusted.

Secondly, I began work on designing a new genetic system capable of responding to pulsed magnetic fields. The operators responding to pulsed magnetic stimuli in the rpoH promoter were extracted and reorganized. Different versions of the rpoH promoter were generated and tested, and their varying responsiveness to magnetic fields was recorded. In order to improve efficiency and produce better operators, a directed evolution method was applied with the help of a CRISPR-dCas9 nicking system. The best performing promoters thus far show a five-fold difference in gene expression between trials with and without the magnetic field.
ContributorsHu, Hao (Author) / Wang, Xiao (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2016
155320-Thumbnail Image.png
Description
Alzheimer’s disease (AD), despite over a century of research, does not have a clearly defined pathogenesis for the sporadic form that makes up the majority of disease incidence. A variety of correlative risk factors have been identified, including the three isoforms of apolipoprotein E (ApoE), a cholesterol transport protein in

Alzheimer’s disease (AD), despite over a century of research, does not have a clearly defined pathogenesis for the sporadic form that makes up the majority of disease incidence. A variety of correlative risk factors have been identified, including the three isoforms of apolipoprotein E (ApoE), a cholesterol transport protein in the central nervous system. ApoE ε3 is the wild-type variant with no effect on risk. ApoE ε2, the protective and most rare variant, reduces risk of developing AD by 40%. ApoE ε4, the risk variant, increases risk by 3.2-fold and 14.9-fold for heterozygous and homozygous representation respectively. Study of these isoforms has been historically complex, but the advent of human induced pluripotent stem cells (hiPSC) provides the means for highly controlled, longitudinal in vitro study. The effect of ApoE variants can be further elucidated using this platform by generating isogenic hiPSC lines through precise genetic modification, the objective of this research. As the difference between alleles is determined by two cytosine-thymine polymorphisms, a specialized CRISPR/Cas9 system for direct base conversion was able to be successfully employed. The base conversion method for transitioning from the ε3 to ε2 allele was first verified using the HEK293 cell line as a model with delivery via electroporation. Following this verification, the transfection method was optimized using two hiPSC lines derived from ε4/ε4 patients, with a lipofection technique ultimately resulting in successful base conversion at the same site verified in the HEK293 model. Additional research performed included characterization of the pre-modification genotype with respect to likely off-target sites and methods of isolating clonal variants.
ContributorsLakers, Mary Frances (Author) / Brafman, David (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171472-Thumbnail Image.png
Description
The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime

The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime editing represents great promise in the design of new gene therapies and disease models where editing was previously not possible using current gene editing techniques. Despite advancements in genome modification technologies, parallel enrichment strategies of edited cells remain lagging behind in development. To this end, this project aimed to enhance prime editing using transient reporter for editing enrichment (TREE) technology to develop a method for the rapid generation of clonal isogenic cell lines for disease modeling. TREE uses an engineered BFP variant that upon a C-to-T conversion will convert to GFP after target modification. Using flow cytometry, this BFP-to-GFP conversion assay enables the isolation of edited cell populations via a fluorescent reporter of editing. Prime induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), pairs prime editing with TREE technology to efficiently enrich for prime edited cells. This investigation revealed PINE-TREE as an efficient editing and enrichment method compared to a conventional reporter of transfection (RoT) enrichment strategy. Here, PINE-TREE exhibited a significant increase in editing efficiencies of single nucleotide conversions, small insertions, and small deletions in multiple human cell types. Additionally, PINE-TREE demonstrated improved clonal cell editing efficiency in human induced pluripotent stem cells (hiPSCs). Most notably, PINE-TREE efficiently generated clonal isogenic hiPSCs harboring a mutation in the APOE gene for in vitro modeling of Alzheimer’s Disease. Collectively, results gathered from this study exhibited PINE-TREE as a valuable new tool in genetic engineering to accelerate the generation of clonal isogenic cell lines for applications in developmental biology, disease modeling, and drug screening.
ContributorsKostes, William Warner (Author) / Brafman, David (Thesis advisor) / Jacobs, Bertram (Committee member) / Lapinaite, Audrone (Committee member) / Tian, Xiaojun (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
158125-Thumbnail Image.png
Description
Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in vitro. CRISPR/Cas9 and base editing technologies have been of recent interest because of their ability to create single nucleotide edits

Alzheimer’s disease (AD) affects over 5 million individuals each year in the United States. Furthermore, most cases of AD are sporadic, making it extremely difficult to model and study in vitro. CRISPR/Cas9 and base editing technologies have been of recent interest because of their ability to create single nucleotide edits at nearly any genomic sequence using a Cas9 protein and a guide RNA (sgRNA). Currently, there is no available phenotype to differentiate edited cells from unedited cells. Past research has employed fluorescent proteins bound to Cas9 proteins to attempt to enrich for edited cells, however, these methods are only reporters of transfection (RoT) and are no indicative of actual base-editing occurring. Thus, this study proposes a transient reporter for editing enrichment (TREE) and Cas9-mediated adenosine TREE (CasMasTREE) which use plasmids to co-transfect with CRISPR/Cas9 technologies to serve as an indicator of base-editing. Specifically, TREE features a blue fluorescent protein (BFP) mutant that, upon a C-T conversion, changes the emission spectrum to a green fluorescent protein (GFP). CasMasTREE features a mCherry and GFP protein separated by a stop codon which can be negated using an A-G conversion. By employing a sgRNA that targets one of the TREE plasmids and at least one genomic site, cells can be sorted for GFP(+) cells. Using these methods, base-edited isogenic hiPSC line generation using TREE (BIG-TREE) was created to generate isogenic hiPSC lines with AD-relevant edits. For example, BIG-TREE demonstrates the capability of converting Apolipoprotein E (APOE), a gene associated with AD-risk development, wildtype (3/3) into another isoform, APOE2/2, to create isogenic hiPSC lines. The capabilities of TREE are vast and can be applied to generate various models of diseases with specific genomic edits.
ContributorsNguyen, Toan Thai Tran (Author) / Brafman, David (Thesis advisor) / Wang, Xiao (Committee member) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2020
158747-Thumbnail Image.png
Description
Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and

Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and has been largely applied in gene circuit engineering. In this work, the effect of adjacent genes and noncoding regions are systematically investigated through the construction of batteries of gene circuits in diverse scenarios. Data-driven analysis yields a protein expression metric that strongly correlates with the features of adjacent transcriptional regions (ATRs). This novel mathematical tool helps the guide for circuit construction and has the implication for the design of synthetic ATRs to tune gene expression, illustrating its potential to facilitate engineering complex gene networks. The ability to tune RNA dynamics is greatly needed for biotech applications, including therapeutics and diagnostics. Diverse methods have been developed to tune gene expression through transcriptional or translational manipulation. Control of RNA stability/degradation is often overlooked and can be the lightweight alternative to regulate protein yields. To further extend the utility of engineered ATRs to regulate gene expression, a library of RNA modules named degradation-tuning RNAs (dtRNAs) are designed with the ability to form specific 5’ secondary structures prior to RBS. These modules can modulate transcript stability while having a minimal interference on translation initiation. Optimization of their functional structural features enables gene expression level to be tuned over a wide dynamic range. These engineered dtRNAs are capable of regulating gene circuit dynamics as well as noncoding RNA levels and can be further expanded into cell-free system for gene expression control in vitro. Finally, integrating dtRNA with synthetic toehold sensor enables improved paper-based viral diagnostics, illustrating the potential of using synthetic dtRNAs for biomedical applications.
ContributorsZhang, Qi (Author) / Wang, Xiao (Thesis advisor) / Green, Alexander (Committee member) / Brafman, David (Committee member) / Tian, Xiaojun (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2020
132709-Thumbnail Image.png
Description
Cell fate is a complex and dynamic process with many genetic components. It has often been likened to “multistable” mathematical systems because of the numerous possible “stable” states, or cell types, that cells may end up in. Due to its complexity, understanding the process of cell fate and

Cell fate is a complex and dynamic process with many genetic components. It has often been likened to “multistable” mathematical systems because of the numerous possible “stable” states, or cell types, that cells may end up in. Due to its complexity, understanding the process of cell fate and differentiation has proven challenging. A better understanding of cell differentiation has applications in regenerative stem cell therapies, disease pathologies, and gene regulatory networks.
A variety of different genes have been associated with cell fate. For example, the Nanog/Oct-4/Sox2 network forms the core interaction of a gene network that maintains stem cell pluripotency, and Oct-4 and Sox2 also play a role in the tissue types that stem cells eventually differentiate into. Using the CRISPR/cas9 based homology independent targeted integration (HITI) method developed by Suzuki et al., we can integrate fluorescent tags behind genes with reasonable efficiency via the non-homologous end joining (NHEJ) DNA repair pathway. With human embryonic kidney (HEK) 293T cells, which can be transfected with high efficiencies, we aim to create a three-parameter reporter cell line with fluorescent tags for three different genes related to cell fate. This cell line would provide several advantages for the study of cell fate, including the ability to quantitatively measure cell state, observe expression heterogeneity among a population of genetically identical cells, and easily monitor fluctuations in expression patterns.
The project is partially complete at this time. This report discusses progress thus far, as well as the challenges faced and the future steps for completing the reporter line.
ContributorsLoveday, Tristan Andre (Author) / Wang, Xiao (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05