Matching Items (2)

Filtering by

Clear all filters

152015-Thumbnail Image.png

Bridging the gap between space-filling and optimal designs

Description

This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good

This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result in good properties when it comes to model fitting. Optimal designs traditionally perform very well in terms of model fitting, particularly when a polynomial is intended, but can result in problematic replication in the case of insignificant factors. By bringing these two design types together, positive properties of each can be retained while mitigating potential weaknesses. Hybrid space-filling designs, generated as Latin hypercubes augmented with I-optimal points, are compared to designs of each contributing component. A second design type called a bridge design is also evaluated, which further integrates the disparate design types. Bridge designs are the result of a Latin hypercube undergoing coordinate exchange to reach constrained D-optimality, ensuring that there is zero replication of factors in any one-dimensional projection. Lastly, bridge designs were augmented with I-optimal points with two goals in mind. Augmentation with candidate points generated assuming the same underlying analysis model serves to reduce the prediction variance without greatly compromising the space-filling property of the design, while augmentation with candidate points generated assuming a different underlying analysis model can greatly reduce the impact of model misspecification during the design phase. Each of these composite designs are compared to pure space-filling and optimal designs. They typically out-perform pure space-filling designs in terms of prediction variance and alphabetic efficiency, while maintaining comparability with pure optimal designs at small sample size. This justifies them as excellent candidates for initial experimentation.

Contributors

Agent

Created

Date Created
  • 2013

152087-Thumbnail Image.png

No-confounding designs of 20 and 24 runs for screening experiments and a design selection methodology

Description

Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These

Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These designs have the property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are completely confounded. In this dissertation, orthogonal arrays were evaluated with many popular design-ranking criteria in order to identify optimal 20-run and 24-run no-confounding designs. Monte Carlo simulation was used to empirically assess the model fitting effectiveness of the recommended no-confounding designs. The results of the simulation demonstrated that these new designs, particularly the 24-run designs, are successful at detecting active effects over 95% of the time given sufficient model effect sparsity. The final chapter presents a screening design selection methodology, based on decision trees, to aid in the selection of a screening design from a list of published options. The methodology determines which of a candidate set of screening designs has the lowest expected experimental cost.

Contributors

Agent

Created

Date Created
  • 2013