Matching Items (2)
Filtering by

Clear all filters

133908-Thumbnail Image.png
Description

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose

Ultimate Frisbee or "Ultimate," is a fast growing field sport that is being played competitively at universities across the country. Many mid-tier college teams have the goal of winning as many games as possible, however they also need to grow their program by training and retaining new players. The purpose of this project was to create a prototype statistical tool that maximizes a player line-up's probability of scoring the next point, while having as equal playing time across all experienced and novice players as possible. Game, player, and team data was collected for 25 different games played over the course of 4 tournaments during Fall 2017 and early Spring 2018 using the UltiAnalytics iPad application. "Amount of Top 1/3 Players" was the measure of equal playing time, and "Line Efficiency" and "Line Interaction" represented a line's probability of scoring. After running a logistic regression, Line Efficiency was found to be the more accurate predictor of scoring outcome than Line Interaction. An "Equal PT Measure vs. Line Efficiency" graph was then created and the plot showed what the optimal lines were depending on what the user's preferences were at that point in time. Possible next steps include testing the model and refining it as needed.

ContributorsSpence, Andrea Nicole (Author) / McCarville, Daniel R. (Thesis director) / Pavlic, Theodore (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
166149-Thumbnail Image.png
Description

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and

The objective goal of this research is to maximize the speed of the end effector of a three link R-R-R mechanical system with constrained torque input control. The project utilizes MATLAB optimization tools to determine the optimal throwing motion of a simulated mechanical system, while mirroring the physical parameters and constraints of a human arm wherever possible. The analysis of this final result determines if the kinetic chain effect is present in the theoretically optimized solution. This is done by comparing it with an intuitively optimized system based on throwing motion derived from the forehand throw in Ultimate frisbee.

ContributorsHartmann, Julien (Author) / Grewal, Anoop (Thesis director) / Redkar, Sangram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05