Matching Items (13)
Description
Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60

Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60 years. GBM Tumor formation can either begin as normal brain cells or develop from an existing low-grade astrocytoma and are housed by the perivascular niche in the brain microenvironment. This niche allows for the persistence of a population of cells known as glioma stem cells (GSC) by supplying optimum growth conditions that build chemoresistance and cause recurrence of the tumor within two to five years of treatment. It has therefore become imperative to understand the role of the perivascular niche on GSCs through in vitro modelling in order to improve the efficiency of therapeutic treatment and increase the survival rate of patients with GBM.

In this study, a unique three dimensional (3D) microfluidic platform that permitted the study of intercellular interactions between three different cell types in the perivascular niche of the brain was developed and utilized for the first time. Specifically, human endothelial cells were embedded in a fibrin matrix and introduced into the vascular layer of the microfluidic platform.

After spontaneous formation of a vascular layer, Normal Human Astrocytes and Patient derived GSC were embedded in a Matrigel® matrix and incorporated in the stroma and tumor regions of the microfluidic device respectively.

Using the established platform, migration, proliferation and stemness of GSCs studies were conducted. The findings obtained indicate that astrocytes in the perivascular niche significantly increase the migratory and proliferative properties of GSCs in the tumor microenvironment, consistent with previous in vivo findings.

The novel GBM tumor microenvironment developed herein, could be utilized for further

in-depth cellular and molecular level studies to dissect the influence of individual factors within the tumor niche on GSCs biology, and could serve as a model for developing targeted therapies.
ContributorsAdjei-Sowah, Emmanuella Akweley (Author) / Nikkhah, Mehdi (Thesis advisor) / Plaisier, Christopher (Committee member) / Mehta, Shwetal (Committee member) / Arizona State University (Publisher)
Created2020
132671-Thumbnail Image.png
Description
While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large

While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large well tagged datasets for their models. In this project I attempt to apply concepts in NLP and procedural generation to a system which can generate a rough scene estimation of a natural language description in a 3d environment from a free use database of models. The primary objective of this system, rather than a completely accurate representation, is to generate a useful or interesting result. The use of such a system comes in assisting designers who utilize 3d scenes or environments for their work.
ContributorsHann, Jacob R. (Author) / Kobayashi, Yoshihiro (Thesis director) / Srivastava, Siddharth (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165564-Thumbnail Image.png
Description

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for feedback on how to improve. In this work, we present Augmented Coach, an augmented reality tool for coaches to give spatiotemporal feedback through a 3-dimensional point cloud of the athlete. The system allows coaches to view a pre-recorded video of their athlete in point cloud form, and provides them with the proper tools in order to go frame by frame to both analyze the athlete’s form and correct it. The result is a fundamentally new concept of an interactive video player, where the coach can remotely view the athlete in a 3-dimensional form and create annotations to help improve their form. We then conduct a user study with subject matter experts to evaluate the usability and capabilities of our system. As indicated by the results, Augmented Coach successfully acts as a supplement to in-person coaching, since it allows coaches to break down the video recording in a 3-dimensional space and provide feedback spatiotemporally. The results also indicate that Augmented Coach can be a complete coaching solution in a remote setting. This technology will be extremely relevant in the future as coaches look for new ways to improve their feedback methods, especially in a remote setting.

ContributorsChannar, Sameer (Author) / Dbeis, Yasser (Co-author) / Richards, Connor (Co-author) / LiKamWa, Robert (Thesis director) / Jayasuriya, Suren (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05