Matching Items (2)
Filtering by

Clear all filters

157443-Thumbnail Image.png
Description
Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models

Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose a new model containing a Hybrid Convolutional Neural Network with a Fusion Layer. The Fusion Layer utilizes a combination of the knowledge obtained from two different domains for enhanced feature extraction from the in-the-wild images. I tested my network on two publicly available in-the-wild datasets namely RAF-DB and AffectNet. Next, I tested my trained model on CK+ dataset for the cross-database evaluation study. I prove that my model achieves comparable results with state-of-the-art methods. I argue that it can perform well on such datasets because it learns the features from two different domains rather than a single domain. Last, I present a real-time facial expression recognition system as a part of this work where the images are captured in real-time using laptop camera and passed to the model for obtaining a facial expression label for it. It indicates that the proposed model has low processing time and can produce output almost instantly.
ContributorsChhabra, Sachin (Author) / Li, Baoxin (Thesis advisor) / Venkateswara, Hemanth (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
132671-Thumbnail Image.png
Description
While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large

While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large well tagged datasets for their models. In this project I attempt to apply concepts in NLP and procedural generation to a system which can generate a rough scene estimation of a natural language description in a 3d environment from a free use database of models. The primary objective of this system, rather than a completely accurate representation, is to generate a useful or interesting result. The use of such a system comes in assisting designers who utilize 3d scenes or environments for their work.
ContributorsHann, Jacob R. (Author) / Kobayashi, Yoshihiro (Thesis director) / Srivastava, Siddharth (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05