Matching Items (2)

Filtering by

Clear all filters

150827-Thumbnail Image.png

Secure sharing of electronic medical records in cloud computing

Description

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more willing to shift their electronic medical record (EMR) systems to clouds that can remove the geographical distance barriers among providers and patient. Even though cloud-based EMRs have received considerable attention since it would help achieve lower operational cost and better interoperability with other healthcare providers, the adoption of security-aware cloud systems has become an extremely important prerequisite for bringing interoperability and efficient management to the healthcare industry. Since a shared electronic health record (EHR) essentially represents a virtualized aggregation of distributed clinical records from multiple healthcare providers, sharing of such integrated EHRs may comply with various authorization policies from these data providers. In this work, we focus on the authorized and selective sharing of EHRs among several parties with different duties and objectives that satisfies access control and compliance issues in healthcare cloud computing environments. We present a secure medical data sharing framework to support selective sharing of composite EHRs aggregated from various healthcare providers and compliance of HIPAA regulations. Our approach also ensures that privacy concerns need to be accommodated for processing access requests to patients' healthcare information. To realize our proposed approach, we design and implement a cloud-based EHRs sharing system. In addition, we describe case studies and evaluation results to demonstrate the effectiveness and efficiency of our approach.

Contributors

Agent

Created

Date Created
  • 2012

153969-Thumbnail Image.png

Techniques for supporting prediction of security breaches in critical cloud infrastructures using Bayesian network and Markov decision process

Description

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.

Contributors

Agent

Created

Date Created
  • 2015