Matching Items (4)
Filtering by

Clear all filters

151052-Thumbnail Image.png
Description
From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type

From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type of activity. The lack of an extensive framework and taxonomy regarding the relative effectiveness of these "active" activities makes it difficult to compare and contrast the value of conditions in different studies in terms of student learning. Recently, Chi (2009) proposed a framework of differentiated overt learning activities (DOLA) as active, constructive, and interactive based on their underlying cognitive principles and their effectiveness on students' learning outcomes. The motivating question behind this framework is whether some types of engagement affect learning outcomes more than the others. This work evaluated the effectiveness and applicability of the DOLA framework to learning activities for STEM classes. After classification of overt learning activities as being active, constructive or interactive, I then tested the ICAP hypothesis, which states that student learning is more effective in interactive activities than constructive activities, which are more effective than active activities, which are more effective than passive activities. I conducted two studies (Study 1 and Study 2) to determine how and to what degree differentiated activities affected students' learning outcomes. For both studies, I measured students' knowledge of materials science and engineering concepts. Results for Study 1 showed that students scored higher on all post-class quiz questions after participating in interactive and constructive activities than after the active activities. However, student scores on more difficult, inference questions suggested that interactive activities provided significantly deeper learning than either constructive or active activities. Results for Study 2 showed that students' learning, in terms of gain scores, increased systematically from passive to active to constructive to interactive, as predicted by ICAP. All the increases, from condition to condition, were significant. Verbal analysis of the students' dialogue in interactive condition indicated a strong correlation between the co-construction of knowledge and learning gains. When the statements and responses of each student build upon those of the other, both students benefit from the collaboration. Also, the linear combination of discourse moves was significantly related to the adjusted gain scores with a very high correlation coefficient. Specifically, the elaborate type discourse moves were positively correlated with learning outcomes; whereas the accept type moves were negatively correlated with learning outcomes. Analyses of authentic activities in a STEM classroom showed that they fit within the taxonomy of the DOLA framework. The results of the two studies provided evidence to support the predictions of the ICAP hypothesis.
ContributorsMenekşe, Muhsin (Author) / Chi, Michelene T.H. (Thesis advisor) / Baker, Dale (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2012
150933-Thumbnail Image.png
Description
The positive relationship between self-regulation and student achievement has been repeatedly supported through research. Key considerations that have resulted from prior research include instructor feedback and explicit expectations, student perception of their control of their progress, accurate self-calibration, reflection, goal-setting, age, and methods by which a cycle which integrates all

The positive relationship between self-regulation and student achievement has been repeatedly supported through research. Key considerations that have resulted from prior research include instructor feedback and explicit expectations, student perception of their control of their progress, accurate self-calibration, reflection, goal-setting, age, and methods by which a cycle which integrates all of these can be put in place. While research provides evidence for that fact that it is possible to support student success in several of these areas, many questions are left as to how guided, active self-regulation impacts students perception of their control over their performance, their ability to accurately assess and act upon their strengths and weaknesses, and, ultimately, their overall progress at different developmental stages. This study intended to provide a better understanding of how guidance in the self-regulation strategies of sixth grade science students can impact their attitudes toward learning. Specifically, this study investigated the question, "What is the effect of active reflection, graphing of grades, and goal setting on sixth-grade students' locus of control and ability to self-regulate?"
ContributorsReid, Lisa J (Author) / Baker, Dale (Thesis advisor) / Marsh, Josephine (Committee member) / Megowan, Colleen (Committee member) / Arizona State University (Publisher)
Created2012
134531-Thumbnail Image.png
Description
Student to Student: A Guide to Anatomy is an anatomy guide written by students, for students. Its focus is on teaching the anatomy of the heart, lungs, nose, ears and throat in a manner that isn't overpowering or stress inducing. Daniel and I have taken numerous anatomy courses, and fully

Student to Student: A Guide to Anatomy is an anatomy guide written by students, for students. Its focus is on teaching the anatomy of the heart, lungs, nose, ears and throat in a manner that isn't overpowering or stress inducing. Daniel and I have taken numerous anatomy courses, and fully comprehend what it takes to have success in these classes. We found that the anatomy books recommended for these courses are often completely overwhelming, offering way more information than what is needed. This renders them near useless for a college student who just wants to learn the essentials. Why would a student even pick it up if they can't find what they need to learn? With that in mind, our goal was to create a comprehensive, easy to understand, and easy to follow guide to the heart, lungs and ENT (ear nose throat). We know what information is vital for test day, and wanted to highlight these key concepts and ideas in our guide. Spending just 60 to 90 minutes studying our guide should help any student with their studying needs. Whether the student has medical school aspirations, or if they simply just want to pass the class, our guide is there for them. We aren't experts, but we know what strategies and methods can help even the most confused students learn. Our guide can also be used as an introductory resource to our respective majors (Daniel-Biology, Charles-Speech and Hearing) for students who are undecided on what they want to do. In the future Daniel and I would like to see more students creating similar guides, and adding onto the "Student to Student' title with their own works... After all, who better to teach students than the students who know what it takes?
ContributorsKennedy, Charles (Co-author) / McDermand, Daniel (Co-author) / Kingsbury, Jeffrey (Thesis director) / Washo-Krupps, Delon (Committee member) / Department of Speech and Hearing Science (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
149522-Thumbnail Image.png
Description
ABSTRACT Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions

ABSTRACT Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science - Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and important aspects of "real" science. Or perhaps that a curriculum with a varied approach my expose students to more aspects of science thus improving their NOS understanding.
ContributorsTalbot, Amanda L (Author) / Luft, Julie (Thesis advisor) / Baker, Dale (Committee member) / Brem, Sarah (Committee member) / Arizona State University (Publisher)
Created2010