Matching Items (5)

Filtering by

Clear all filters

136814-Thumbnail Image.png

Electromyograph Remote Control Jellyfish Toy: A Brief Exploration of Jellyfish Biomimetics

Description

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.

Contributors

Agent

Created

Date Created
2014-05

137067-Thumbnail Image.png

Electrochemical Detection of Environmental Contaminants Using Portable Low-Cost Sensor

Description

Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental

Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental contaminant sensor was developed using electrochemical techniques and an efficient hydrogel capture mechanism. The sensor operates with high sensitivity and maintains specificity without the added requirement of extensive electrode modification. Rather, specificity is obtained by choosing specific potential regions in which individual contaminants show reduction or oxidation activity. A calibration curve was generated showing the utility of the sensor in detecting gas compounds reliably in reference to a current state of the art sensor. Reusability of the sensor was also demonstrated with a cyclic exposure test in which response reversibility was observed. As such, the investigated sensor shows great promise as a replacement technology in the current environmental contaminant detector industry.

Contributors

Created

Date Created
2014-05

137098-Thumbnail Image.png

3D Printing Sensor-Stents

Description

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.

Contributors

Agent

Created

Date Created
2014-05

137263-Thumbnail Image.png

Multimarker Sensor Development for Intermediate Glycemic Index, A Novel Approach for a Glycated Albumin Sensor

Description

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA)

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.

Contributors

Agent

Created

Date Created
2014-05

161280-Thumbnail Image.png

Advancing the Implementation and Adoption of Urine Diversion Systems in Commercial and Institutional Buildings in the United States: A Focus on Control of Urea Hydrolysis

Description

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including water conservation, nutrient recovery, and pharmaceutical removal. Urine diversion systems depend greatly on the functionality of nonwater urinals and urine diverting toilets, which are needed to collect undiluted urine. However, the urea hydrolysis reaction creates conditions that lead to precipitation in the fixtures due to the increase in pH from 6 to 9 as ammonia and bicarbonate are produced. Chapter 2 and Chapter 3 describes the creation and use of a cyber-physical system (CPS) to monitor and control urea hydrolysis in the urinal testbed. Two control logics were used to control urea hydrolysis in realistic restroom conditions. In the experiments, acid was added to inhibit urea hydrolysis during periods of high and low building occupancy. These results were able to show that acid should be added based on the restroom use in order to efficiently inhibit urea hydrolysis.
Chapter 4 advanced the results from Chapter 3 by testing the acid addition control logics in a real restroom with the urinal-on-wheels. The results showed that adding acid during periods of high building occupancy equated to the least amount of acid added and allowed for urea hydrolysis inhibition. This study also analyzed the bacterial communities of the collected urine and found that acid addition changed the structure of the bacterial communities.
Chapter 5 showed an example of the capabilities of a CPS when implemented in CI buildings. The study used data mining methods to predict chlorine residuals in premise plumbing in a CI green building. The results showed that advance modeling methods were able to model the system better than traditional methods. These results show that CPS technology can be used to illuminate systems and can provide information needed to understand conditions within CI buildings.

Contributors

Agent

Created

Date Created
2021