Matching Items (9)

Filtering by

Clear all filters

137098-Thumbnail Image.png

3D Printing Sensor-Stents

Description

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.

Contributors

Agent

Created

Date Created
2014-05

150540-Thumbnail Image.png

Detection of nitroaromatic explosives using an electrical-electrochemical and optical hybrid sensor

Description

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts per trillion level TNT in the presence of various interferents within a few minutes. A novel hybrid electrochemical-colorimetric (EC-C) sensing platform was also designed and fabricated to meet these challenges. The hybrid sensor is based on electrochemical reactions of trace explosives, colorimetric detection of the reaction products, and unique properties of the explosives in an ionic liquid (IL). This approach affords not only increased sensitivity but also selectivity as evident from the demonstrated null rate of false positives and low detection limits. Using an inexpensive webcam a detection limit of part per billion in volume (ppbV) has been achieved and demonstrated selective detection of explosives in the presence of common interferences (perfumes, mouth wash, cleaners, petroleum products, etc.). The works presented in this dissertation, were published in the Journal of the American Chemical Society (JACS, 2009) and Nano Letters (2010), won first place in the National Defense Research contest in (2009) and has been granted a patent (WO 2010/030874 A1). In addition, other work related to conductive polymer junctions and their sensing capabilities has been published in Applied Physics Letters (2005) and IEEE sensors journal (2008).

Contributors

Agent

Created

Date Created
2012

152146-Thumbnail Image.png

Portable sensors for breath analysis

Description

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common.

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.

Contributors

Agent

Created

Date Created
2013

152160-Thumbnail Image.png

The effects of endovascular treatment parameters on cerebral aneurysm hemodynamics

Description

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases.

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.

Contributors

Agent

Created

Date Created
2013

151565-Thumbnail Image.png

MEMS harsh environment sensors for earth and space exploration

Description

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible

Harsh environments have conditions that make collecting scientific data difficult with existing commercial-off-the-shelf technology. Micro Electro Mechanical Systems (MEMS) technology is ideally suited for harsh environment characterization and operation due to the wide range of materials available and an incredible array of different sensing techniques while providing small device size, low power consumption, and robustness. There were two main objectives of the research conducted. The first objective was to design, fabricate, and test novel sensors that measure the amount of exposure to ionizing radiation for a wide range of applications including characterization of harsh environments. Two types of MEMS ionizing radiation dosimeters were developed. The first sensor was a passive radiation-sensitive capacitor-antenna design. The antenna's emitted frequency of peak-intensity changed as exposure time to radiation increased. The second sensor was a film bulk acoustic-wave resonator, whose resonant frequency decreased with increasing ionizing radiation exposure time. The second objective was to develop MEMS sensor systems that could be deployed to gather scientific data and to use that data to address the following research question: do temperature and/or conductivity predict the appearance of photosynthetic organisms in hot springs. To this end, temperature and electrical conductivity sensor arrays were designed and fabricated based on mature MEMS technology. Electronic circuits and the software interface to the electronics were developed for field data collection. The sensor arrays utilized in the hot springs yielded results that support the hypothesis that temperature plays a key role in determining where the photosynthetic organisms occur. Additionally, a cold-film fluidic flow sensor was developed, which is suitable for near-boiling temperature measurement. Future research should focus on (1) developing a MEMS pH sensor array with integrated temperature, conductivity, and flow sensors to provide multi-dimensional data for scientific study and (2) finding solutions to biofouling and self-calibration, which affects sensor performance over long-term deployment.

Contributors

Agent

Created

Date Created
2013

155424-Thumbnail Image.png

A novel mobile device for environmental hydrocarbon sensing and its applications

Description

The accurate and fast determination of organic air pollutants for many applications and studies is critical. Exposure to volatile organic compounds (VOCs) has become an important public health concern, which may induce a lot of health effects such as respiratory

The accurate and fast determination of organic air pollutants for many applications and studies is critical. Exposure to volatile organic compounds (VOCs) has become an important public health concern, which may induce a lot of health effects such as respiratory irritation, headaches and dizziness. In order to monitor the personal VOCs exposure level at point-of-care, a wearable real time monitor for VOCs detection is necessary. For it to be useful in real world application, it requires low cost, small size and weight, low power consumption, high sensitivity and selectivity.

To meet these requirements, a novel mobile device for personal VOCs exposure monitor has been developed. The key sensing element is a disposable molecularly imprinted polymer based quartz tuning fork resonator. The sensor and fabrication protocol are low cost, reproducible and stable. Characterization on the sensing material and device has been done. Comparisons with gold standards in the field such as GC-MS have been conducted. And the device’s functionality and capability have been validated in field tests, proving that it’s a great tool for VOCs monitoring under different scenarios.

Contributors

Agent

Created

Date Created
2017

156321-Thumbnail Image.png

Sensor Development for Physiological and Environmental Monitoring

Description

The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase

The sensor industry is a growing industry that has been predicted by Allied Market Research to be a multi-billion industry by 2022. One of the many key drives behind this rapid growth in the sensor industry is the increase incorporation of sensors into portable electrical devices. The value for sensor technologies are increased when the sensors are developed into innovative measuring system for application uses in the Aerospace, Defense, and Healthcare industries. While sensors are not new, their increased performance, size reduction, and decrease in cost has opened the door for innovative sensor combination for portable devices that could be worn or easily moved around. With this opportunity for further development of sensor use through concept engineering development, three concept projects for possible innovative portable devices was undertaken in this research. One project was the development of a pulse oximeter devise with fingerprint recognition. The second project was prototyping a portable Bluetooth strain gage monitoring system. The third project involved sensors being incorporated onto flexible printed circuit board (PCB) for improved comfort of wearable devices. All these systems were successfully tested in lab.

Contributors

Agent

Created

Date Created
2018

154815-Thumbnail Image.png

A simulator for solar array monitoring

Description

Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring

Utility scale solar energy is generated by photovoltaic (PV) cell arrays, which are often deployed in remote areas. A PV array monitoring system is considered where smart sensors are attached to the PV modules and transmit data to a monitoring station through wireless links. These smart monitoring devices may be used for fault detection and management of connection topologies. In this thesis, a compact hardware simulator of the smart PV array monitoring system is described. The voltage, current, irradiance, and temperature of each PV module are monitored and the status of each panel along with all data is transmitted to a mobile device. LabVIEW and Arduino board programs have been developed to display and visualize the monitoring data from all sensors. All data is saved on servers and mobile devices and desktops can easily access analytics from anywhere. Various PV array conditions including shading, faults, and loading are simulated and demonstrated.

Additionally, Electrical mismatch between modules in a PV array due to partial shading causes energy losses beyond the shaded module, as unshaded modules are forced to operate away from their maximum power point in order to compensate for the shading. An irradiance estimation algorithm is presented for use in a mismatch mitigation system. Irradiance is estimated using measurements of module voltage, current, and back surface temperature. These estimates may be used to optimize an array’s electrical configuration and reduce the mismatch losses caused by partial shading. Propagation of error in the estimation is examined; it is found that accuracy is sufficient for use in the proposed mismatch mitigation application.

Contributors

Agent

Created

Date Created
2016

161280-Thumbnail Image.png

Advancing the Implementation and Adoption of Urine Diversion Systems in Commercial and Institutional Buildings in the United States: A Focus on Control of Urea Hydrolysis

Description

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including water conservation, nutrient recovery, and pharmaceutical removal. Urine diversion systems depend greatly on the functionality of nonwater urinals and urine diverting toilets, which are needed to collect undiluted urine. However, the urea hydrolysis reaction creates conditions that lead to precipitation in the fixtures due to the increase in pH from 6 to 9 as ammonia and bicarbonate are produced. Chapter 2 and Chapter 3 describes the creation and use of a cyber-physical system (CPS) to monitor and control urea hydrolysis in the urinal testbed. Two control logics were used to control urea hydrolysis in realistic restroom conditions. In the experiments, acid was added to inhibit urea hydrolysis during periods of high and low building occupancy. These results were able to show that acid should be added based on the restroom use in order to efficiently inhibit urea hydrolysis.
Chapter 4 advanced the results from Chapter 3 by testing the acid addition control logics in a real restroom with the urinal-on-wheels. The results showed that adding acid during periods of high building occupancy equated to the least amount of acid added and allowed for urea hydrolysis inhibition. This study also analyzed the bacterial communities of the collected urine and found that acid addition changed the structure of the bacterial communities.
Chapter 5 showed an example of the capabilities of a CPS when implemented in CI buildings. The study used data mining methods to predict chlorine residuals in premise plumbing in a CI green building. The results showed that advance modeling methods were able to model the system better than traditional methods. These results show that CPS technology can be used to illuminate systems and can provide information needed to understand conditions within CI buildings.

Contributors

Agent

Created

Date Created
2021