Matching Items (6)
Filtering by

Clear all filters

152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
134209-Thumbnail Image.png
Description
Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical performance for chemical sensors to be used in the real-world application.
ContributorsRohit, Riddhi S (Author) / Forzani, Erica (Thesis director) / Tsow, Francis (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135876-Thumbnail Image.png
Description
Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no

Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no easy task. This paper compares and contrasts various algorithms used in modern day ASR systems, and focuses primarily on ASR systems in resource constrained environments. The Green colored blocks in Figure 1 will be focused on in greater detail throughout this paper, they are the key to building an exceptional ASR system. Deep Neural Networks (DNNs) are the clear and current leader among ASR technologies; all research in this field is currently revolving around this method. Although DNNs are very effective, many older methods of ASR are used often due to the complexities involved with DNNs; these difficulties include the large amount of hardware resources as well as development resources, such as engineers and money, required for this method.
ContributorsPetersen, Casey Alexander (Author) / Csavina, Kristine (Thesis director) / Pollat, Scott (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
165856-Thumbnail Image.png
Description

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured with the capacity to measure breath acetone concentrations typical of various levels of metabolic activity. For this purpose, a solution that selectively interacts with acetone was embedded in a sensor cartridge that is permeable to volatile organic compounds. After 30 minutes of exposure to a range of acetone concentrations, a color change response was observed in the sensors. Requiring only exposure to a breath, these novel sensor configurations may offer non-trivial improvements to clinical and at-home measurement of lipid metabolic rate.

ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis director) / Mora, Sabrina Jimena (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
151764-Thumbnail Image.png
Description
Spirometry is a type of pulmonary function test that measures the amount of air volume and the speed of air flow from a patient's breath in order to assess lung function. The goal of this project is to develop and validate a mobile spirometer technology based on a differential pressure

Spirometry is a type of pulmonary function test that measures the amount of air volume and the speed of air flow from a patient's breath in order to assess lung function. The goal of this project is to develop and validate a mobile spirometer technology based on a differential pressure sensor. The findings in this paper are used in a larger project that combines the features of a capnography device and a spirometer into a single mobile health unit known as the capno-spirometer. The following paper discusses the methods, experiments, and prototypes that were developed and tested in order to create a robust and accurate technology for all of the spirometry functions within the capno-spirometer. The differential pressure sensor is set up with one inlet measuring the pressure inside the spirometer tubing and the other inlet measuring the ambient pressure of the environment. The inlet measuring the inside of the tubing is very sensitive to its orientation and position with respect to the path of the air flow. It is found that taking a measurement from the center of the flow is 50% better than from the side wall. The sensor inlet is optimized at 37 mm from the mouthpiece inlet. The unit is calibrated by relating the maximum pressure sensor voltage signal to the peak expiratory flow rate (PEF) taken during a series of spirometry tests. In conclusion, this relationship is best represented as a quadratic function and a calibration equation is computed to provide a flow rate given a voltage change. The flow rates are used to calculate the four main spirometry parameters: PEF, FVC, FEV1, and FER. These methods are then referenced with the results from a commercial spirometer for validation. After validation, the pressure-based spirometry technology is proven to be both robust and accurate.
ContributorsMiller, Dylan (Author) / Forzani, Erica (Thesis advisor) / Trimble, Steve (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2013