Matching Items (7)
Filtering by

Clear all filters

152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150596-Thumbnail Image.png
Description
Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This

Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This work involves development of an innovative mobile health system with adaptive biofeedback mechanism and demonstrates the importance of biofeedback in accurate measurements of physiological parameters to facilitate the diagnosis in mobile health systems. Resting Metabolic Rate (RMR) assessment, a key aspect in the treatment of diet related health problems is considered as a model to demonstrate the importance of adaptive biofeedback in mobile health. A breathing biofeedback mechanism has been implemented with digital signal processing techniques for real-time visual and musical guidance to accurately measure the RMR. The effects of adaptive biofeedback with musical and visual guidance were assessed on 22 healthy subjects (12 men, 10 women). Eight RMR measurements were taken for each subject on different days under same conditions. It was observed the subjects unconsciously followed breathing biofeedback, yielding consistent and accurate measurements for the diagnosis. The coefficient of variation of the measured metabolic parameters decreased significantly (p < 0.05) for 20 subjects out of 22 subjects.
ContributorsKrishnan, Ranganath (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2012
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134209-Thumbnail Image.png
Description
Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical performance for chemical sensors to be used in the real-world application.
ContributorsRohit, Riddhi S (Author) / Forzani, Erica (Thesis director) / Tsow, Francis (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
165856-Thumbnail Image.png
Description

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured with the capacity to measure breath acetone concentrations typical of various levels of metabolic activity. For this purpose, a solution that selectively interacts with acetone was embedded in a sensor cartridge that is permeable to volatile organic compounds. After 30 minutes of exposure to a range of acetone concentrations, a color change response was observed in the sensors. Requiring only exposure to a breath, these novel sensor configurations may offer non-trivial improvements to clinical and at-home measurement of lipid metabolic rate.

ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis director) / Mora, Sabrina Jimena (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
151005-Thumbnail Image.png
Description
The project is mainly aimed at detecting the gas flow rate in Biosensors and medical health applications by means of an acoustic method using whistle based device. Considering the challenges involved in maintaining particular flow rate and back pressure for detecting certain analytes in breath analysis the proposed system along

The project is mainly aimed at detecting the gas flow rate in Biosensors and medical health applications by means of an acoustic method using whistle based device. Considering the challenges involved in maintaining particular flow rate and back pressure for detecting certain analytes in breath analysis the proposed system along with a cell phone provides a suitable way to maintain the flow rate without any additional battery driven device. To achieve this, a system-level approach is implemented which involves development of a closed end whistle which is placed inside a tightly fitted constant back pressure tube. By means of experimentation pressure vs. flowrate curve is initially obtained and used for the development of the particular whistle. Finally, by means of an FFT code in a cell phone the flow rate vs. frequency characteristic curve is obtained. When a person respires through the device a whistle sound is generated which is captured by the cellphone microphone and a FFT analysis is performed to determine the frequency and hence the flow rate from the characteristic curve. This approach can be used to detect flow rate as low as low as 1L/min. The concept has been applied for the first time in this work to the development and optimization of a breath analyzer.
ContributorsRavichandran, Balaje Dhanram (Author) / Forzani, Erica (Thesis advisor) / Xian, Xiaojun (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2012