Matching Items (4)
Filtering by

Clear all filters

136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133566-Thumbnail Image.png
Description
Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the

Active pixel sensors hold a lot of promise for space applications in star tracking because of their effectiveness against radiation, small size, and on-chip processing. The research focus is on documenting and validating ground test equipment for these types of sensors. Through demonstrating the utility of a commercial sensor, the research will be able to work on ensuring the accuracy of ground tests. This contribution allows for future research on improving active pixel sensor performance.
ContributorsDotson, Breydan Lane (Author) / White, Daniel (Thesis director) / Jansen, Rolf (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
132963-Thumbnail Image.png
Description
Background: Recent interests in continuous biomonitoring and the surge of wearable biotechnology demand a better understanding of sweat as a noninvasive biomarker resource. The ability to use sweat as a biofluid provides the opportunity for noninvasive early and continuous diagnostics. This thesis serves to help fill the existing knowledge ga

Background: Recent interests in continuous biomonitoring and the surge of wearable biotechnology demand a better understanding of sweat as a noninvasive biomarker resource. The ability to use sweat as a biofluid provides the opportunity for noninvasive early and continuous diagnostics. This thesis serves to help fill the existing knowledge gap in sweat biomarker discovery and applications.

Experimental Design: In part one of this study, exercise-induced eccrine sweat was collected from 50 healthy individuals and analyzed using mass spectrometry, protein microarrays, and quantitative ELISAs to identify a broad range of proteins, antibody isotypes, and cytokines in sweat. In part two of this study, cortisol and melatonin levels were analyzed in exercise-induced sweat and plasma samples collected from 22 individuals.

Results: 220 unique proteins were identified by shotgun analysis in pooled sweat samples. Detectable antibody isotypes include IgA (100% positive; median 1230 ± 28 700 pg/mL), IgD (18%; 22.0 ± 119 pg/mL), IgG1 (96%;1640 ± 6750 pg/mL), IgG2 (37%; 292 ± 6810 pg/mL), IgG3 (71%;74.0 ± 119 pg/mL), IgG4 (69%; 43.0 ± 42.0 pg/mL), and IgM (41%;69.0 ± 1630 pg/mL). Of 42 cytokines, three were readily detected in all sweat samples (p<0.01). The median concentration for interleukin-1α was 352 ± 521 pg/mL, epidermal growth factor was 86.5 ± 147 pg/mL, and angiogenin was 38.3 ± 96.3 pg/mL. Multiple other cytokines were detected at lower levels. The median and standard deviation of cortisol was determined to be 4.17 ± 11.1 ng/mL in sweat and 76.4 ± 28.8 ng/mL in plasma. The correlation between sweat and plasma cortisol levels had an R-squared value of 0.0802 (excluding the 2 highest sweat cortisol levels). The median and standard deviation of melatonin was determined to be 73.1 ± 198 pg/mL in sweat and 194 ± 93.4 pg/mL in plasma. Similar to cortisol, the correlation between sweat and plasma melatonin had an R-squared value of 0.117.

Conclusion: These studies suggest that sweat holds more proteomic and hormonal biomarkers than previously thought and may eventually serve as a noninvasive biomarker resource. These studies also highlight many of the challenges associated with monitoring sweat content including differences between collection devices and hydration, evaporation losses, and sweat rate.
ContributorsZhu, Meilin (Author) / Anderson, Karen (Thesis director) / Blain Christen, Jennifer (Committee member) / Gronowski, Ann (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05