Matching Items (2)
Filtering by

Clear all filters

133260-Thumbnail Image.png
Description
Smart cars are defined by the European Union Agency for Network and Information Security (ENISA) as systems providing connected, added-value features in order to enhance car users' experience or improve car safety. Because of their extra features, smart cars utilize sophisticated computer systems. These systems, particularly the Controller Area Network

Smart cars are defined by the European Union Agency for Network and Information Security (ENISA) as systems providing connected, added-value features in order to enhance car users' experience or improve car safety. Because of their extra features, smart cars utilize sophisticated computer systems. These systems, particularly the Controller Area Network (CAN) bus and protocol, have been shown to provide information that can be used to accurately identify individual Electronic Control Units (ECUs) within a car and the driver that is operating a car. I expand upon this work to consider how information from in-vehicle computer systems can be used to identify individual vehicles. I consider fingerprinting vehicles as a means of aiding in stolen car recovery, thwarting VIN forgery, and supporting an intrusion detection system for networks of smart and autonomous vehicles in the near future. I provide an overview of in-vehicle computer systems and detail my work toward building an ECU testbed and fingerprinting vehicles.
ContributorsDavison, Paulina (Author) / Zhao, Ziming (Thesis director) / Ahn, Gail-Joon (Committee member) / Shoshitaishvili, Yan (Committee member) / Doupe, Adam (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134879-Thumbnail Image.png
Description
The purpose of this project was to implement and analyze a new proposed rootkit that claims a greater level of stealth by hiding in cache. Today, the vast majority of embedded devices are powered by ARM processors. To protect their processors from attacks, ARM introduced a hardware security extension known

The purpose of this project was to implement and analyze a new proposed rootkit that claims a greater level of stealth by hiding in cache. Today, the vast majority of embedded devices are powered by ARM processors. To protect their processors from attacks, ARM introduced a hardware security extension known as TrustZone. It provides an isolated execution environment within the embedded device that enables us to run various memory integrity and malware detection tools to identify possible breaches in security to the normal world. Although TrustZone provides this additional layer of security, it also adds another layer of complexity, and thus comes with its own set of vulnerabilities. This new rootkit identifies and exploits a cache incoherence in the ARM device as a result of TrustZone. The newly proposed rootkit, called CacheKit, takes advantage of this cache incoherence to avoid memory introspection from tools in secure world. We implement CacheKit on the i.MX53 development board, which features a single ARM Cortex A8 processor, to analyze the limitations and vulnerabilities described in the original paper. We set up the Linux environment on the computer to be able to cross-compile for the development board which will be running the FreeScale android 2.3.4 platform with a 2.6.33 Linux kernel. The project is implemented as a kernel module that once installed on the board can manipulate cache as desired to conceal the rootkit. The module exploits the fact that in TrustZone, the secure world does not have access to the normal world cache. First, a technique known as Cache-asRAM is used to ensure that the rootkit is loaded only into cache of the normal world where it can avoid detection from the secure world. Then, we employ the cache maintenance instructions and resisters provided in the cp15 coprocessor to keep the code persistent in cache. Furthermore, the cache lines are mapped to unused I/O address space so that if cache content is flushed to RAM for inspection, the data is simply lost. This ensures that even if the rootkit were to be flushed into memory, any trace of the malicious code would be lost. CacheKit prevents defenders from analyzing the code and destroys any forensic evidence. This provides attackers with a new and powerful tool that is excellent for certain scenarios that were previously thought to be secure. Finally, we determine the limitations of the prototype to determine possible areas for future growth and research into the security of networked embedded devices.
ContributorsGutierrez Barnett, Mauricio Antonio (Author) / Zhao, Ziming (Thesis director) / Doupe, Adam (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12