Matching Items (2)
Filtering by

Clear all filters

153167-Thumbnail Image.png
Description
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing

The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain (residues 684-705) of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the pre-fusion and post-fusion conformations, most of which could not react with the broadly neutralizing antibodies 2F5 and 4E10. Structural information on the TM domain of gp41 is scant and at low resolution.

This thesis describes the structural studies of MPR-TM (residues 649-705) of HIV-1 gp41 by X-ray crystallography. MPR-TM was fused with different fusion proteins to improve the membrane protein overexpression. The expression level of MPR-TM was improved by fusion to the C-terminus of the Mistic protein, yielding ∼1 mg of pure MPR-TM protein per liter cell culture. The fusion partner Mistic was removed for final crystallization. The isolated MPR-TM protein was biophysically characterized and is a monodisperse candidate for crystallization. However, no crystal with diffraction quality was obtained even after extensive crystallization screens. A novel construct was designed to overexpress MPR-TM as a maltose binding protein (MBP) fusion. About 60 mg of MBP/MPR-TM recombinant protein was obtained from 1 liter of cell culture. Crystals of MBP/MPR-TM recombinant protein could not be obtained when MBP and MPR-TM were separated by a 42 amino acid (aa)-long linker but were obtained after changing the linker to three alanine residues. The crystals diffracted to 2.5 Å after crystallization optimization. Further analysis of the diffraction data indicated that the crystals are twinned. The final structure demonstrated that MBP crystallized as a dimer of trimers, but the electron density did not extend beyond the linker region. We determined by SDS-PAGE and MALDI-TOF MS that the crystals contained MBP only. The MPR-TM of gp41 might be cleaved during or after the process of crystallization. Comparison of the MBP trimer reported here with published trimeric MBP fusion structures indicated that MBP might form such a trimeric conformation under the effect of MPR-TM.
ContributorsGong, Zhen (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Thesis advisor) / Ros, Alexandra (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153729-Thumbnail Image.png
Description
CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown

CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown to induce HIV-1 transcytosis-blocking antibodies in mice and rabbits. However, the induction of high-titer MPR specific antibodies with HIV-1 transcytosis blocking ability remains a challenge as the immuno-dominance of CTB overshadows the response to MPR. X-ray crystallography was used to investigate the structure of CTB-MPR with the goal of identifying potential solutions to improve the immune response of MPR. Various CTB-MPR variants were designed using different linkers connecting the two fusion proteins. The procedures for over-expression E. coli and purification have been optimized for each of the variants of CTB-MPR. The purity and oligomeric homogeneity of the fusion protein was demonstrated by electrophoresis, size-exclusion chromatography, dynamic light scattering, and immuno-blot analysis. Crystallization conditions for macroscopic and micro
ano-crystals have been established for the different variants of the fusion protein. Diffraction patterns were collected by using both conventional and serial femto-second crystallography techniques. The two crystallography techniques showed very interesting differences in both the crystal packing and unit cell dimensions of the same CTB-MPR construct. Although information has been gathered on CTB-MPR, the intact structure of fusion protein was not solved as the MPR region showed only weak electron density or was cleaved during crystallization of macroscopic crystals. The MPR region is present in micro
ano-crystals, but due to the severe limitation of the Free Electron Laser beamtime, only a partial data set was obtained and is insufficient for structure determination. However, the work of this thesis has established methods to purify large quantities of CTB-MPR and has established procedures to grow crystals for X-ray structure analysis. This has set the foundation for future structure determination experiments as well as immunization studies.
ContributorsLee, Ho-Hsien (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2015