Matching Items (5)
Filtering by

Clear all filters

136790-Thumbnail Image.png
Description
Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons,

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.
ContributorsDamari, Ben Aviv (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136060-Thumbnail Image.png
Description
ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.
ContributorsMcGlone, Taylor (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
148329-Thumbnail Image.png
Description

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive responses to non-nestmates. A new method of adding hydrocarbons to ants, the “Snow Globe” method was further optimized and tested on C. floridanus. It involves adding hydrocarbons and a solvent to a vial of water, vortexing it, suspending hydrocarbon droplets throughout the solution, and then dipping a narcotized ant in. It is hoped this method can evenly coat ants in hydrocarbon. Ants were treated with heptacosane (C27), nonacosane (C29), hentriacontane (C31), a mixture of C27/C29/C31, 2-methyltriacontane (2MeC30), S-3-methylhentriacontane (SMeC31), and R-3-methylhentriacontane (RMeC31). These were chosen to see how ants reacted in a nestmate recognition context to methyl-branched hydrocarbons, R and S enantiomers, and to multiple added alkanes. Behavior assays were performed on treated ants, as well as two untreated controls, a foreign ant and a nestmate ant. There were 15 replicates of each condition, using 15 different queenright colonies. The Snow Globe method successfully transfers hydrocarbons, as confirmed by solid phase microextraction (SPME) done on treated ants, and the behavior assay data shows the foreign control, SMeC31, and the mixture of C27/29/31 were all statistically significant in their differences from the native control. The multiple alkane mixture received a significant response while single alkanes did not, which supports the idea that larger variations in hydrocarbon profile are needed for an ant to be perceived as foreign. The response to SMeC31 shows C. floridanus can respond during nestmate recognition to hydrocarbons that are not naturally occurring, and it indicates the nestmate recognition process may simply be responding to any compounds not found in the colony profile and rather than detecting particular foreign compounds.

ContributorsNoss, Serena Marie (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161789-Thumbnail Image.png
Description
The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2.

The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2. Decomposability of the collective colony-level response into individual responses; and 3. Mechanisms to integrate the colony- and individual-level responses. In the first part of my dissertation, I explore coordinated collective responses of colonies in during the alarm response to an alarmed nestmate (chapter 2&3). I develop a machine-learning approach to quantitatively estimate the collective and individual alarm response (chapter 2). Using this methodology, I demonstrate that colony alarm responses to the introduction of alarmed nestmates can be decomposed into immediately cascading, followed by variable dampening processes. Each of those processes are found to be modulated by variation in individual alarm responsiveness, as measured by alarm response threshold and persistence of alarm behavior. This variation is modulated in turn by environmental context, in particular with task-related social context (chapter 3). In the second part of my dissertation, I examine the mechanisms responsible for colonial changes in metabolic rate during ontogeny. Prior studies have found that larger ant colonies (as for larger organisms) have lower mass-specific metabolic rates, but the mechanisms remain unclear. In a 3.5-year study on 25 colonies, metabolic rates of colonies and colony components were measured during ontogeny (chapter 4). The scaling of metabolic rate during ontogeny was fit better by segmented regression or quadratic regression models than simple linear regression models, showing that colonies do not follow a universal power-law of metabolism during the ontogenetic development. Furthermore, I showed that the scaling of colonial metabolic rates can be primarily explained by changes in the ratio of brood to adult workers, which nonlinearly affects colonial metabolic rates. At high ratios of brood to workers, colony metabolic rates are low because the metabolic rate of larvae and pupae are much lower than adult workers. However, the high colony metabolic rates were observed in colonies with moderate brood: adult ratios, because higher ratios cause adult workers to be more active and have higher metabolic rates, presumably due to the extra work required to feed more brood.
ContributorsGuo, Xiaohui (Author) / Fewell, Jennifer H (Thesis advisor) / Kang, Yun (Thesis advisor) / Harrison, Jon F (Committee member) / Liebig, Juergen (Committee member) / Pratt, Stephen C (Committee member) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2021
132615-Thumbnail Image.png
Description
Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers

Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
ContributorsAnderson, Clayton Edward (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05