Matching Items (4)
Filtering by

Clear all filters

147679-Thumbnail Image.png
Description

Fatigue damage accumulation under multiaxial loading conditions is an important practical problem for which there is a need to collect additional experimental data to calibrate and validate models. In this work, a sample with a special geometry capable of producing biaxial stresses while undergoing uniaxial load was fabricated and tested

Fatigue damage accumulation under multiaxial loading conditions is an important practical problem for which there is a need to collect additional experimental data to calibrate and validate models. In this work, a sample with a special geometry capable of producing biaxial stresses while undergoing uniaxial load was fabricated and tested successfully and used, along with standard dogbone samples, to monitor the evolution of surface roughness development under cyclic loading using optical microscopy. In addition, a Michelson interferometer was successfully designed, built and tested that can be used to monitor surface roughness for lower levels of load than those used in this work. Results of testing and characterization in 2024-T3 samples tested at a maximum stress slightly below their yield strength and load ratio ~ 0.1 indicate that most of the surface roughness development under cyclic loads occurs on the second half of the fatigue, with the bulk of it close to failure. However, samples with load axes perpendicular to the rolling direction showed earlier development of roughness, which correlated with shorter fatigue lives and the expected anisotropy of strength in the material.

ContributorsMiller, Ryley J (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / School of Earth and Space Exploration (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147535-Thumbnail Image.png
Description

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for

The Star Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M dwarfs in the far-ultraviolet (FUV) and near-ultraviolet (NUV) (160 and 280 nm respectively), measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. The delta-doped detectors baselined for SPARCS have demonstrated more than five times the in-band quantum efficiency of the detectors of GALEX. Given that red:UV photon emission from cool, low-mass stars can be million:one, UV observation of thes stars are susceptible to red light contamination. In addition to the high efficiency delta-doped detectors, SPARCS will include red-rejection filters to help minimize red leak. Even so, careful red-rejection and photometric calibration is needed. As was done for GALEX, white dwarfs are used for photometric calibration in the UV. We find that the use of white dwarfs to calibrate the observations of red stars leads to significant errors in the reported flux, due to the differences in white dwarf and red dwarf spectra. Here we discuss the planned SPARCS calibration model and the color correction, and demonstrate the importance of this correction when recording UV measurements of M stars taken by SPARCS.

ContributorsOsby, Ella (Author) / Shkolnik, Evgenya (Thesis director) / Ardila, David (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir

Gamma-ray bursts (GRBs) are a type of astrophysical transient resulting from the most energetic explosions known in the universe. The explosions occur in distant galaxies, and their bright initial emission may only last a few seconds. Colibri is a telescope being built at the San Pedro Martir Observatory in Baja, CA, MX with high sensitivity in order to study these events at a high redshift. Due to how quickly GRBs occur, it is essential to develop an image reduction pipeline that can quickly and accurately detect these events. Using existing image reduction software from Coatli, which was programmed and optimized for speed using python, numerous time trials were performed in order to determine if the pipeline meets the time requirements with various factors being adjusted. The goal of this experiment is for the telescope to respond to, capture, and reduce the images in under 3 minutes. It was determined that the reduction was optimized when the number of files to be reduced was set equal to 16 or higher by changing the batch number and the blank sky subtraction function was performed. As for the number of exposures, one can take up to four 30 second exposures or twenty 5 second exposures and reduce them in under 3 minutes.
ContributorsHeiligenstein, Wren (Author) / Butler, Nathaniel (Thesis director) / Jansen, Rolf (Committee member) / Dimitrova, Tzvetelina (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2024-05
132610-Thumbnail Image.png
Description
The Hydrogen Epoch of Reionization Array, HERA, is a radio telescope currently being built in South Africa that plans to observe the early universe, specifically the earliest period of star and galaxy formation. It plans to use a tool called a delay spectrum to separate signal emitted from this time

The Hydrogen Epoch of Reionization Array, HERA, is a radio telescope currently being built in South Africa that plans to observe the early universe, specifically the earliest period of star and galaxy formation. It plans to use a tool called a delay spectrum to separate signal emitted from this time from the much brighter radio foregrounds. It is the purpose of this paper to outline the method used to characterize the contamination of these delay spectra by bright emissions of radio here on Earth called radio frequency interference, RFI. The portion of the bandwidth containing the signal from the period of initial star formation was specifically examined. In order to receive usable data, the HERA commissioning team was assisted in the evaluation of the most recent data releases. On the first batch of usable data, flagging algorithms were run in order to mask all of the RFI present. A method of filling these masked values was determined, which allowed for the delay spectrum to be observed. Various methods of injecting RFI into the data were tested which portrayed the large dependence of the delay spectrum on its presence. Finally, the noise power was estimated in order to predict whether or not the limitations observed in the dynamic range were comparable to the noise floor. By examining the evolution of the delay spectrum's power as a range of noise power was introduced, there is a good amount of evidence that this limitation is in fact the noise floor. From this, we see that excision algorithms and interpolation used are capable of removing the effects of most all of the RFI contamination.
ContributorsBechtel, Shane Kirkpatrick (Author) / Bowman, Judd (Thesis director) / Jacobs, Daniel (Committee member) / Beardsley, Adam (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05