Matching Items (3)
Filtering by

Clear all filters

149739-Thumbnail Image.png
Description
III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the progress of green emission light emitting devices has been limited

III-nitride alloys are wide band gap semiconductors with a broad range of applications in optoelectronic devices such as light emitting diodes and laser diodes. Indium gallium nitride light emitting diodes have been successfully produced over the past decade. But the progress of green emission light emitting devices has been limited by the incorporation of indium in the alloy, mainly due to phase separation. This difficulty could be addressed by studying the growth and thermodynamics of these alloys. Knowledge of thermodynamic phase stabilities and of pressure - temperature - composition phase diagrams is important for an understanding of the boundary conditions of a variety of growth techniques. In this dissertation a study of the phase separation of indium gallium nitride is conducted using a regular solution model of the ternary alloy system. Graphs of Gibbs free energy of mixing were produced for a range of temperatures. Binodal and spinodal decomposition curves show the stable and unstable regions of the alloy in equilibrium. The growth of gallium nitride and indium gallium nitride was attempted by the reaction of molten gallium - indium alloy with ammonia at atmospheric pressure. Characterization by X-ray diffraction, photoluminescence, and secondary electron microscopy show that the samples produced by this method contain only gallium nitride in the hexagonal phase. The instability of indium nitride at the temperatures required for activation of ammonia accounts for these results. The photoluminescence spectra show a correlation between the intensity of a broad green emission, related to native defects, and indium composition used in the molten alloy. A different growth method was used to grow two columnar-structured gallium nitride films using ammonium chloride and gallium as reactants and nitrogen and ammonia as carrier gasses. Investigation by X-ray diffraction and spatially-resolved cathodoluminescence shows the film grown at higher temperature to be primarily hexagonal with small quantities of cubic crystallites, while the one grown at lower temperature to be pure hexagonal. This was also confirmed by low temperature photoluminescence measurements. The results presented here show that cubic and hexagonal crystallites can coexist, with the cubic phase having a much sharper and stronger luminescence. Controlled growth of the cubic phase GaN crystallites can be of use for high efficiency light detecting and emitting devices. The ammonolysis of a precursor was used to grow InGaN powders with different indium composition. High purity hexagonal GaN and InN were obtained. XRD spectra showed complete phase separation for samples with x < 30%, with ~ 9% indium incorporation in the 30% sample. The presence of InGaN in this sample was confirmed by PL measurements, where luminescence from both GaN and InGaN band edge are observed. The growth of higher indium compositions samples proved to be difficult, with only the presence of InN in the sample. Nonetheless, by controlling parameters like temperature and time may lead to successful growth of this III-nitride alloy by this method.
ContributorsHill, Arlinda (Author) / Ponce, Fernando A. (Thesis advisor) / Chamberlin, Ralph V (Committee member) / Sankey, Otto F (Committee member) / Smith, David J. (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2011
156875-Thumbnail Image.png
Description
Fluctuations with a power spectral density depending on frequency as $1/f^\alpha$ ($0<\alpha<2$) are found in a wide class of systems. The number of systems exhibiting $1/f$ noise means it has far-reaching practical implications; it also suggests a possibly universal explanation, or at least a set of shared properties. Given this

Fluctuations with a power spectral density depending on frequency as $1/f^\alpha$ ($0<\alpha<2$) are found in a wide class of systems. The number of systems exhibiting $1/f$ noise means it has far-reaching practical implications; it also suggests a possibly universal explanation, or at least a set of shared properties. Given this diversity, there are numerous models of $1/f$ noise. In this dissertation, I summarize my research into models based on linking the characteristic times of fluctuations of a quantity to its multiplicity of states. With this condition satisfied, I show that a quantity will undergo $1/f$ fluctuations and exhibit associated properties, such as slow dynamics, divergence of time scales, and ergodicity breaking. I propose that multiplicity-dependent characteristic times come about when a system shares a constant, maximized amount of entropy with a finite bath. This may be the case when systems are imperfectly coupled to their thermal environment and the exchange of conserved quantities is mediated through their local environment. To demonstrate the effects of multiplicity-dependent characteristic times, I present numerical simulations of two models. The first consists of non-interacting spins in $0$-field coupled to an explicit finite bath. This model has the advantage of being degenerate, so that its multiplicity alone determines the dynamics. Fluctuations of the alignment of this model will be compared to voltage fluctuations across a mesoscopic metal-insulator-metal junction. The second model consists of classical, interacting Heisenberg spins with a dynamic constraint that slows fluctuations according to the multiplicity of the system's alignment. Fluctuations in one component of the alignment will be compared to the flux noise in superconducting quantum interference devices (SQUIDs). Finally, I will compare both of these models to each other and some of the most popular models of $1/f$ noise, including those based on a superposition of exponential relaxation processes and those based on power law renewal processes.
ContributorsDavis, Bryce F (Author) / Chamberlin, Ralph V (Thesis advisor) / Mauskopf, Philip (Committee member) / Wolf, George (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2018
134375-Thumbnail Image.png
Description
To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The engine was mounted with a diffuser disc exhaust to restrict flow, and a pressure sensor was installed in the O2 port to measure pressure under different restrictions. During testing, problems with the equipment prevented suitable from being generated. Using failure root cause analysis, the failure modes were identified and plans were made to resolve those issues. While no useful data was generated, the project successfully rebuilt a dynamometer for students to use for future engine research.
ContributorsRoss, Zachary David (Author) / Middleton, James (Thesis director) / Steele, Bruce (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05