Matching Items (2)
Filtering by

Clear all filters

Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
132563-Thumbnail Image.png
Description
Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with

Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with sensors that observe environmental factors. Due to the critical nature of these converters, as well as the vast range of environments in which they are used, it is important that they accurately sample data regardless of environmental factors. These environmental factors range from input noise and power supply variations to temperature and radiation, and it is important to know how each may affect the accuracy of the resulting data when designing circuits that depend upon the data from these ADCs. These environmental factors are considered hostile environments, as they each generally have a negative effect on the operation of an ADC. This thesis seeks to investigate the effects of several of these hostile environmental variables on the performance of analog to digital converters. Three different analog to digital converters with similar specifications were selected and analyzed under common hostile environments. Data was collected on multiple copies of an ADC and averaged together to analyze the results using multiple characteristics of converter performance. Performance metrics were obtained across a range of frequencies, input noise, input signal offsets, power supply voltages, and temperatures. The obtained results showed a clear decrease in performance farther from a room temperature environment, but the results for several other environmental variables showed either no significant correlation or resulted in inconclusive data.
ContributorsSwanson, Taylor Catherine (Co-author) / Millman, Hershel (Co-author) / Barnaby, Hugh (Thesis director) / Garrity, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05