Matching Items (6)
Filtering by

Clear all filters

154739-Thumbnail Image.png
Description
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance

Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined.

After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
ContributorsMiller, Benjamin (Author) / Crozier, Peter (Thesis advisor) / Liu, Jingyue (Committee member) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2016
155448-Thumbnail Image.png
Description
In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information

In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information about extended structural defects, chemical homogeneity and interface abruptness. The materials investigated included InAs1-xBix alloys grown on GaSb (001) substrates, InAs/InAs1-xSbx type-II superlattices grown on GaSb (001) substrates, and CdTe-based thin-film structures grown on InSb (001) substrates.

The InAsBi dilute-bismide epitaxial films were grown on GaSb (001) substrates at relatively low growth temperatures. The films were mostly free of extended defects, as observed in diffraction-contrast images, but the incorporation of bismuth was not homogeneous, as manifested by the lateral Bi-composition modulation and Bi-rich surface droplets. Successful Bi incorporation into the InAs matrix was confirmed using lattice expansion measurements obtained from misfit strain analysis of high-resolution TEM (HREM) images.

Analysis of averaged intensity line profiles in HREM and scanning TEM (STEM) images of the Ga-free InAs/InAs1-xSbx type-II strained superlattices indicated slight variations in layer thickness across the superlattice stack. The interface abruptness was evaluated using misfit strain analysis of AC-STEM images, electron energy-loss spectroscopy and 002 dark-field imaging. The compositional profiles of antimony across the superlattices were fitted to a segregation model and revealed a strong antimony segregation probability.

The CdTe/MgxCd1-xTe double-heterostructures were grown with Cd overflux in a dual-chamber molecular beam epitaxy with an ultra-high vacuum transfer loadlock. Diffraction-contrast images showed that the growth temperature had a strong impact on the structural quality of the epilayers. Very abrupt CdTe/InSb interfaces were obtained for epilayers grown at the optimum temperature of 265 °C, and high-resolution imaging using AC-STEM revealed an interfacial transition region with a width of a few monolayers and smaller lattice spacing than either CdTe or InSb.
ContributorsLu, Jing (Author) / Smith, David J. (Thesis advisor) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2017
157552-Thumbnail Image.png
Description
Non-stoichiometric oxides play a critical role in many catalytic, energy, and sensing technologies, providing the ability to reversibly exchange oxygen with the ambient environment through the creation and annihilation of surface oxygen vacancies. Oxygen exchange at the surfaces of these materials is strongly influenced by atomic structure, which varies significantly

Non-stoichiometric oxides play a critical role in many catalytic, energy, and sensing technologies, providing the ability to reversibly exchange oxygen with the ambient environment through the creation and annihilation of surface oxygen vacancies. Oxygen exchange at the surfaces of these materials is strongly influenced by atomic structure, which varies significantly across nanoparticle surfaces. The studies presented herein elucidate the relationship between surface structure behaviors and oxygen exchange reactions on ceria (CeO2) catalyst materials. In situ aberration-corrected transmission electron microscopy (AC-TEM) techniques were developed and employed to correlate dynamic atomic-level structural heterogeneities to local oxygen vacancy activity.

A model Ni/CeO2 catalyst was used to probe the role of a ceria support during hydrocarbon reforming reactions, and it was revealed that carbon formation was inhibited on Ni metal nanoparticles due to the removal of lattice oxygen from the ceria support and subsequent oxidation of adsorbed decomposed hydrocarbon products. Atomic resolution observations of surface oxygen vacancy creation and annihilation were performed on CeO2 nanoparticle surfaces using a novel time-resolved in situ AC-TEM approach. Cation displacements were found to be related to oxygen vacancy creation and annihilation, and the most reactive surface oxygen sites were identified by monitoring the frequency of cation displacements. In addition, the dynamic evolution of CeO2 surface structures was characterized with high temporal resolution AC-TEM imaging, which resulted in atomic column positions and occupancies to be determined with a combination of spatial precision and temporal resolution that had not previously been achieved. As a result, local lattice expansions and contractions were observed on ceria surfaces, which were likely related to cyclic oxygen vacancy activity. Finally, local strain fields on CeO2 surfaces were quantified, and it was determined that local strain enhanced the ability of a surface site to create oxygen vacancies. Through the characterization of dynamic surface structures with advanced AC-TEM techniques, an improvement in the fundamental understanding of how ceria surfaces influence and control oxygen exchange reactions was obtained.
ContributorsLawrence, Ethan Lee (Author) / Crozier, Peter A. (Thesis advisor) / Lin, Jerry (Committee member) / Liu, Jingyue (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2019
158128-Thumbnail Image.png
Description
III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant

III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant and bandgap to be tuned independently. This dissertation provides a comprehensive study of the surface morphology and the structural and chemical properties of InAsSbBi alloys grown by molecular beam epitaxy.

210 nm thick InAsSbBi layers grown at temperatures from 280 °C to 430 °C on (100) on-axis, (100) offcut 1° to (011), and (100) offcut 4° to (111)A GaSb substrates are investigated using Rutherford back scattering, X-ray diffraction, transmission electron microscopy, Nomarski optical microscopy, atomic force microscopy, and photoluminescence spectroscopy. The results indicate that the layers are coherently strained and contain dilute Bi mole fractions.

Large surface droplets with diameters and densities on the order of 3 µm and 106 cm-2 are observed when the growth is performed with As overpressures around 1%. Preferential orientation of the droplets occurs along the [011 ̅] step edges offcut (100) 1° to (011) substrate. The surface droplets are not observed when the As overpressure is increased to 4%. Small crystalline droplets with diameters and densities on the order of 70 nm and 1010 cm-2 are observed between the large droplets for the growth at 430°C. Analysis of one of the small droplets indicates a misoriented zinc blende structure composed of In, Sb, and Bi, with a 6.543 ± 0.038 Å lattice constant.

Lateral variation in the Bi mole fraction is observed in InAsSbBi grown at high temperature (400 °C, 420 °C) on (100) on-axis and (100) offcut 4° to (111)A substrates, but is not observed for growth at 280 °C or on (100) substrates that are offcut 1° to (011). Improved crystal and optical quality is observed in the high temperature grown InAsSbBi and CuPtB type atomic ordering on the {111}B planes is observed in the low temperature grown InAsSbBi. Strain induced tilt is observed in coherently strained InAsSbBi grown on offcut substrates.
ContributorsKosireddy, Rajeev Reddy (Author) / Johnson, Shane R (Thesis advisor) / Smith, David J. (Committee member) / Alford, Terry L. (Committee member) / Soignard, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2020
158490-Thumbnail Image.png
Description
Extended crystal defects often play a critical role in determining semiconductor device performance. This dissertation describes the application of transmission electron microscopy (TEM) and aberration-corrected scanning TEM (AC-STEM) to study defect clusters and the atomic-scale structure of defects in compound semiconductors.

An extensive effort was made to identify specific locations of

Extended crystal defects often play a critical role in determining semiconductor device performance. This dissertation describes the application of transmission electron microscopy (TEM) and aberration-corrected scanning TEM (AC-STEM) to study defect clusters and the atomic-scale structure of defects in compound semiconductors.

An extensive effort was made to identify specific locations of crystal defects in epitaxial CdTe that might contribute to degraded light-conversion efficiency. Electroluminescence (EL) mapping and the creation of surface etch pits through chemical treatment were combined in attempts to identify specific structural defects for subsequent TEM examination. Observations of these specimens revealed only surface etch pits, without any visible indication of extended defects near their base. While chemical etch pits could be helpful for precisely locating extended defects that intersect with the treated surface, this study concluded that surface roughness surrounding etch pits would likely mitigate against their usefulness.

Defect locations in GaAs solar-cell devices were identified using combinations of EL, photoluminescence, and Raman scattering, and then studied more closely using TEM. Observations showed that device degradation was invariably associated with a cluster of extended defects, rather than a single defect, as previously assumed. AC-STEM observations revealed that individual defects within each cluster consisted primarily of intrinsic stacking faults terminated by 30° and 90° partial dislocations, although other defect structures were also identified. Lomer dislocations were identified near locations where two lines of strain contrast intersected in a large cluster, and a comparatively shallow cluster, largely constrained to the GaAs emitter layer, contained 60° perfect dislocations associated with localized strain contrast.

In another study, misfit dislocations at II-VI/III-V heterovalent interfaces were investigated and characterized using AC-STEM. Misfit strain at ZnTe/GaAs interfaces, which have relatively high lattice mismatch (7.38%), was relieved primarily through Lomer dislocations, while ZnTe/InP interfaces, with only 3.85% lattice mismatch, were relaxed by a mixture of 60° perfect dislocations, 30° partial dislocations, and Lomer dislocations. These results were consistent with the previous findings that misfit strain was relaxed primarily through 60° perfect dislocations that had either dissociated into partial dislocations or interacted to form Lomer dislocations as the amount of misfit strain increased.
ContributorsMcKeon, Brandon (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Thesis advisor) / Liu, Jingyue (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2020
157845-Thumbnail Image.png
Description
Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various

Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various performance metrics, can be combined to elucidate functionality at multiple length scales. In this work, two promising visible light harvesting systems are studied in detail: Pt-functionalized graphitic carbon nitrides (g-CNxHys) and TiO2-supported CeO2-x composites.

Electron energy-loss spectroscopy (EELS) is used to sense variations in the local concentration of amine moieties (defects believed to facilitate interfacial charge transfer) at the surface of a g-CNxHy flake. Using an aloof-beam configuration, spatial resolution is maximized while minimizing damage thus providing nanoscale vibrational fingerprints similar to infrared absorption spectra. Structural disorder in g-CNxHys is further studied using transmission electron microscopy at low electron fluence rates. In-plane structural fluctuations revealed variations in the local azimuthal orientation of the heptazine building blocks, allowing planar domain sizes to be related to the average polymer chain length. Furthermore, competing factors regulating photocatalytic performance in a series of Pt/g-CNxHys is elucidated. Increased polymer condensation in the g-CNxHy support enhances the rate of charge transfer to reactants owing to higher electronic mobility. However, active site densities are over 3x lower on the most condensed g-CNxHy which ultimately limits its H2 evolution rate (HER). Based on these findings, strategies to improve the cocatalyst configuration on intrinsically active supports are given.

In TiO2/CeO2-x photocatalysts, the effect of the support particle size on the bulk
anoscale properties and photocatalytic performance is investigated. Small anatase supports facilitate highly dispersed CeO2-x species, leading to increased visible light absorption and HERs resulting from a higher density of mixed metal oxide (MMO) interfaces with Ce3+ species. Using monochromated EELS, bandgap states associated with MMO interfaces are detected, revealing electronic transitions from 0.5 eV up to the bulk bandgap onset of anatase. Overall, the electron microscopy/spectroscopy techniques developed and applied herein sheds light onto the relevant defects and limiting processes operating within these photocatalyst systems thus suggesting rational design strategies.
ContributorsHaiber, Diane Michelle (Author) / Crozier, Peter (Thesis advisor) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2019