Matching Items (3)
Filtering by

Clear all filters

136012-Thumbnail Image.png
Description
Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective

Bexarotene is a commercially produced drug commonly known as Targetin presecribed to treat cutaneous T-cell lymphoma (CTCL). Bex mimics the actions of natural 9-cis retinoic acid in the body, which are derived from Vitamin A in the diet and boost the immune system. Bex has been shown to be effective in the treatment of multiple types of cancer, including lung cancer. However, the disadvantages of using Bex include increased instances of hypothyroidism and excessive concentrations of blood triglycerides. If an analog of Bex can be developed which retains high affinity RXR binding similar to the 9-cis retinoic acid while exhibiting less interference for heterodimerization pathways, it would be of great clinical significance in improving the quality of life for patients with CTCL. This thesis will detail the biological profiling of additional novel (Generation Two) analogs, which are currently in submission for publication, as well as that of Generation Three analogs. The results from these studies reveal that specific alterations in the core structure of the Bex "parent" compound structure can have dramatic effects in modifying the biological activity of RXR agonists.
ContributorsYang, Joanna (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Hibler, Elizabeth (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
139859-Thumbnail Image.png
Description

The FDA-approved drug bexarotene has been predominantly utilized for the treatment of cutaneous T-cell lymphoma (CTLC), but has shown promise as an off label treatment for various other cancers as well as Alzheimer's disease (AD). However, harmful side effects such as hypothyroidism have catalyzed a search for alternative rexinoids which

The FDA-approved drug bexarotene has been predominantly utilized for the treatment of cutaneous T-cell lymphoma (CTLC), but has shown promise as an off label treatment for various other cancers as well as Alzheimer's disease (AD). However, harmful side effects such as hypothyroidism have catalyzed a search for alternative rexinoids which retain similar levels of RXR agonism while reducing the undesirable effects incurred by bexarotene. This honors thesis outlines the steps taken to design and synthesize novel analogues of the selective retinoid-X-receptor (RXR) agonist 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). Corresponding NMR spectra indicates the successful construction of four novel compounds which are structurally similar to known, biologically-evaluated rexinoids that have induced fewer side effects while stimulating greater levels of RXR selectivity as compared to bexarotene. Future In vitro analyses of these four analogues coupled with the recognized efficacy of their parent compounds demonstrate the chemotherapeutic potential of structurally modified bexarotene analogues

ContributorsDavidson, Jesse Raymond (Author) / Wagner, Carl (Thesis director) / Ball, Rebecca (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132561-Thumbnail Image.png
Description
Bexarotene is a synthetic analog of 9-cis-retinoic acid and ligand for the retinoid X receptor which has a history of clinical success in the treatment of T-cell lymphoma. Bexarotene has also shown potential for treating a variety of other cancers, which we seek to explore in this project. The potential

Bexarotene is a synthetic analog of 9-cis-retinoic acid and ligand for the retinoid X receptor which has a history of clinical success in the treatment of T-cell lymphoma. Bexarotene has also shown potential for treating a variety of other cancers, which we seek to explore in this project. The potential of bexarotene lies in its unique mechanisms and wide application, however, it has shown limited effectiveness thus far in the treatment of breast and lung cancer, with moderate levels of efficacy and symptoms such as cutaneous toxicity, hyperlipidemia, and hypothyroidism. For this project several analogs of bexarotene were synthesized with the intentions of making a more potent ligand that can be used to treat these carcinomas while minimizing harmful side effects. We were successful in synthesizing a large variety of analogs over the span of roughly two years, including iso-chroman derivatives of bexarotene and NEt-TMN, in addition to a new series of analogs of the reported NEt-TMN derivative. These analogs were analyzed via melting point determination and nuclear magnetic resonance (NMR) spectroscopy to confirm the molecular structure and determine purity, and it is our intent to continue with further testing of these compounds to determine their effectiveness as well as the side effects they are likely to cause with levels of toxicity. Recent studies suggest that continuing the analysis of these compounds and other rexinoids like the ones described herein is a worthwhile endeavor as similar rexinoids have shown in numerous assays to be more potent and less toxic in the treatment of cancers when compared with bexarotene.
ContributorsMoen, Grant Anthony (Author) / Wagner, Carl (Thesis director) / Deutch, Charles (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05