Matching Items (7)
Filtering by

Clear all filters

151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
153424-Thumbnail Image.png
Description
Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact

Comparative life cycle assessment (LCA) evaluates the relative performance of multiple products, services, or technologies with the purpose of selecting the least impactful alternative. Nevertheless, characterized results are seldom conclusive. When one alternative performs best in some aspects, it may also performs worse in others. These tradeoffs among different impact categories make it difficult to identify environmentally preferable alternatives. To help reconcile this dilemma, LCA analysts have the option to apply normalization and weighting to generate comparisons based upon a single score. However, these approaches can be misleading because they suffer from problems of reference dataset incompletion, linear and fully compensatory aggregation, masking of salient tradeoffs, weight insensitivity and difficulties incorporating uncertainty in performance assessment and weights. Consequently, most LCA studies truncate impacts assessment at characterization, which leaves decision-makers to confront highly uncertain multi-criteria problems without the aid of analytic guideposts. This study introduces Stochastic Multi attribute Analysis (SMAA), a novel approach to normalization and weighting of characterized life-cycle inventory data for use in comparative Life Cycle Assessment (LCA). The proposed method avoids the bias introduced by external normalization references, and is capable of exploring high uncertainty in both the input parameters and weights.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Chester, Mikhail V (Committee member) / Kullapa Soratana (Committee member) / Tervonen, Tommi (Committee member) / Arizona State University (Publisher)
Created2015
150496-Thumbnail Image.png
Description
Distorted vowel production is a hallmark characteristic of dysarthric speech, irrespective of the underlying neurological condition or dysarthria diagnosis. A variety of acoustic metrics have been used to study the nature of vowel production deficits in dysarthria; however, not all demonstrate sensitivity to the exhibited deficits. Less attention has been

Distorted vowel production is a hallmark characteristic of dysarthric speech, irrespective of the underlying neurological condition or dysarthria diagnosis. A variety of acoustic metrics have been used to study the nature of vowel production deficits in dysarthria; however, not all demonstrate sensitivity to the exhibited deficits. Less attention has been paid to quantifying the vowel production deficits associated with the specific dysarthrias. Attempts to characterize the relationship between naturally degraded vowel production in dysarthria with overall intelligibility have met with mixed results, leading some to question the nature of this relationship. It has been suggested that aberrant vowel acoustics may be an index of overall severity of the impairment and not an "integral component" of the intelligibility deficit. A limitation of previous work detailing perceptual consequences of disordered vowel acoustics is that overall intelligibility, not vowel identification accuracy, has been the perceptual measure of interest. A series of three experiments were conducted to address the problems outlined herein. The goals of the first experiment were to identify subsets of vowel metrics that reliably distinguish speakers with dysarthria from non-disordered speakers and differentiate the dysarthria subtypes. Vowel metrics that capture vowel centralization and reduced spectral distinctiveness among vowels differentiated dysarthric from non-disordered speakers. Vowel metrics generally failed to differentiate speakers according to their dysarthria diagnosis. The second and third experiments were conducted to evaluate the relationship between degraded vowel acoustics and the resulting percept. In the second experiment, correlation and regression analyses revealed vowel metrics that capture vowel centralization and distinctiveness and movement of the second formant frequency were most predictive of vowel identification accuracy and overall intelligibility. The third experiment was conducted to evaluate the extent to which the nature of the acoustic degradation predicts the resulting percept. Results suggest distinctive vowel tokens are better identified and, likewise, better-identified tokens are more distinctive. Further, an above-chance level agreement between nature of vowel misclassification and misidentification errors was demonstrated for all vowels, suggesting degraded vowel acoustics are not merely an index of severity in dysarthria, but rather are an integral component of the resultant intelligibility disorder.
ContributorsLansford, Kaitlin L (Author) / Liss, Julie M (Thesis advisor) / Dorman, Michael F. (Committee member) / Azuma, Tamiko (Committee member) / Lotto, Andrew J (Committee member) / Arizona State University (Publisher)
Created2012
154166-Thumbnail Image.png
Description
Since the collapse of the Soviet Union, musicologists have been delving into formerly inaccessible archives and publishing new research on Eastern Bloc composers. Much of the English-language scholarship, however, has focused on already well-known composers from Russia or Poland. In contrast, composers from smaller countries such as the Czech Republic

Since the collapse of the Soviet Union, musicologists have been delving into formerly inaccessible archives and publishing new research on Eastern Bloc composers. Much of the English-language scholarship, however, has focused on already well-known composers from Russia or Poland. In contrast, composers from smaller countries such as the Czech Republic (formerly Czechoslovakia) have been neglected. In this thesis, I shed light on the new music scene in Czechoslovakia from 1948–1989, specifically during the period of “Normalization” (1969–1989).

The period of Normalization followed a cultural thaw, and beginning in 1969 the Czechoslovak government attempted to restore control. Many Czech and Slovak citizens kept their opinions private to avoid punishment, but some voiced their opinions and faced repression, while others chose to leave the country. In this thesis, I explore how two Czech composers, Marek Kopelent (b. 1932) and Petr Kotík (b. 1942) came to terms with writing music before and during the period of Normalization.
ContributorsJohnson, Victoria K (Author) / Feisst, Sabine (Thesis advisor) / Oldani, Robert (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2015
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05
157729-Thumbnail Image.png
Description
Extracellular Vesicles (EVs), particularly exosomes, are of considerable interest as tumor biomarkers since tumor-derived EVs contain a broad array of information about tumor pathophysiology including its metabolic and metastatic status. However, current EV based assays cannot distinguish between EV biomarker changes by altered secretion of EVs during diseased conditions like

Extracellular Vesicles (EVs), particularly exosomes, are of considerable interest as tumor biomarkers since tumor-derived EVs contain a broad array of information about tumor pathophysiology including its metabolic and metastatic status. However, current EV based assays cannot distinguish between EV biomarker changes by altered secretion of EVs during diseased conditions like cancer, inflammation, etc. that express a constant level of a given biomarker, stable secretion of EVs with altered biomarker expression, or a combination of these two factors. This issue was addressed by developing a nanoparticle and dye-based fluorescent immunoassay that can distinguish among these possibilities by normalizing EV biomarker level(s) to EV abundance, revealing average expression levels of EV biomarker under observation. In this approach, EVs are captured from complex samples (e.g. serum), stained with a lipophilic dye and hybridized with antibody-conjugated quantum dot probes for specific EV surface biomarkers. EV dye signal is used to quantify EV abundance and normalize EV surface biomarker expression levels. EVs from malignant (PANC-1) and nonmalignant pancreatic cell lines (HPNE) exhibited similar staining, and probe-to-dye ratios did not change with EV abundance, allowing direct analysis of normalized EV biomarker expression without a separate EV quantification step. This EV biomarker normalization approach markedly improved the ability of serum levels of two pancreatic cancer biomarkers, EV EpCAM, and EV EphA2, to discriminate pancreatic cancer patients from nonmalignant control subjects. The streamlined workflow and robust results of this assay are suitable for rapid translation to clinical applications and its flexible design permits it to be rapidly adapted to quantitate other EV biomarkers by the simple swapping of the antibody-conjugated quantum dot probes for those that recognize a different disease-specific EV biomarker utilizing a workflow that is suitable for rapid clinical translation.
ContributorsRodrigues, Meryl (Author) / Hu, Tony (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Kiani, Samira (Committee member) / Smith, Barbara (Committee member) / Han, Haiyong (Committee member) / Arizona State University (Publisher)
Created2019
190981-Thumbnail Image.png
Description
As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged

As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged to understand loss trends, build forecasts, and study societal impacts of losses. Specifically, this work makes use of the Spatial Hazard Events and Losses Database which is an unparalleled source of loss data for the United States. The first portion of this dissertation develops accurate loss baselines that are crucial for mitigation planning, infrastructure investment, and risk communication. This is accomplished thorough a stationarity analysis of county level losses following a normalization procedure. A wide variety of studies employ loss data without addressing stationarity assumptions or the possibility for spurious regression. This work enables the statistically rigorous application of such loss time series to modeling applications. The second portion of this work develops a novel matrix variate dynamic factor model for spatio-temporal loss data stratified across multiple correlated hazards or perils. The developed model is employed to analyze and forecast losses from convective storms, which constitute some of the highest losses covered by insurers. Adopting factor-based approach, forecasts are achieved despite the complex and often unobserved underlying drivers of these losses. The developed methodology extends the literature on dynamic factor models to matrix variate time series. Specifically, a covariance structure is imposed that is well suited to spatio-temporal problems while significantly reducing model complexity. The model is fit via the EM algorithm and Kalman filter. The third and final part of this dissertation investigates the impact of compounding hazard events on state and regional migration in the United States. Any attempt to capture trends in climate related migration must account for the inherent uncertainties surrounding climate change, natural hazard occurrences, and socioeconomic factors. For this reason, I adopt a Bayesian modeling approach that enables the explicit estimation of the inherent uncertainty. This work can provide decision-makers with greater clarity regarding the extent of knowledge on climate trends.
ContributorsBoyle, Esther Sarai (Author) / Jevtic, Petar (Thesis advisor) / Lanchier, Nicolas (Thesis advisor) / Lan, Shiwei (Committee member) / Cheng, Dan (Committee member) / Fricks, John (Committee member) / Gall, Melanie (Committee member) / Cutter, Susan (Committee member) / McNicholas, Paul (Committee member) / Arizona State University (Publisher)
Created2023