Matching Items (2)
Filtering by

Clear all filters

153418-Thumbnail Image.png
Description
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
ContributorsZhong, Xuan (Author) / Yost, William (Thesis advisor) / Zhou, Yi (Committee member) / Dorman, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
137447-Thumbnail Image.png
Description
In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed

In this study, the Bark transform and Lobanov method were used to normalize vowel formants in speech produced by persons with dysarthria. The computer classification accuracy of these normalized data were then compared to the results of human perceptual classification accuracy of the actual vowels. These results were then analyzed to determine if these techniques correlated with the human data.
ContributorsJones, Hanna Vanessa (Author) / Liss, Julie (Thesis director) / Dorman, Michael (Committee member) / Borrie, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Department of English (Contributor) / Speech and Hearing Science (Contributor)
Created2013-05