Matching Items (23)

132547-Thumbnail Image.png

Automated Bicycle Human-in-the-Loop Control

Description

Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental impact of bicycling combined with the reduced requirement for road

Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental impact of bicycling combined with the reduced requirement for road and parking spaces makes bicycles a good choice for transportation over short distances in urban areas. Bicycle riding has also been shown to improve overall health and increase life expectancy. However, riding a bicycle may be inconvenient or impossible for persons with disabilities due to the complex and coordinated nature of the task. Automated bicycles provide an interesting area of study for human-robot interaction, due to the number of contact points between the rider and the bicycle. The goal of the Smart Bike project is to provide a platform for future study of the physical interaction between a semi-autonomous bicycle robot and a human rider, with possible applications in rehabilitation and autonomous vehicle research.

This thesis presents the development of two balance control systems, which utilize actively controlled steering and a control moment gyroscope to stabilize the bicycle at high and low speeds. These systems may also be used to introduce disturbances, which can be useful for studying human reactions. The effectiveness of the steering balance control system is verified through testing with a PID controller in an outdoor environment. Also presented is the development of a force sensitive bicycle seat which provides feedback used to estimate the pose of the rider on the bicycle. The relationship between seat force distribution is demonstrated with a motion capture experiment. A corresponding software system is developed for balance control and sensor integration, with inputs from the rider, the internal balance and steering controller, and a remote operator.

Contributors

Agent

Created

Date Created
2019-05

134257-Thumbnail Image.png

HA-MRA: A Human-Aware Multi-Robot Architecture

Description

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners

This thesis describes a multi-robot architecture which allows teams of robots to work with humans to complete tasks. The multi-agent architecture was built using Robot Operating System and Python. This architecture was designed modularly, allowing the use of different planners and robots. The system automatically replans when robots connect or disconnect. The system was demonstrated on two real robots, a Fetch and a PeopleBot, by conducting a surveillance task on the fifth floor of the Computer Science building at Arizona State University. The next part of the system includes extensions for teaming with humans. An Android application was created to serve as the interface between the system and human teammates. This application provides a way for the system to communicate with humans in the loop. In addition, it sends location information of the human teammates to the system so that goal recognition can be performed. This goal recognition allows the generation of human-aware plans. This capability was demonstrated in a mock search and rescue scenario using the Fetch to locate a missing teammate.

Contributors

Agent

Created

Date Created
2017-05

133401-Thumbnail Image.png

Development of a Game of Logic for Investigating of Trust in Human Robot Interaction

Description

As robotics technology advances, robots are being created for use in situations where they collaborate with humans on complex tasks.  For this to be safe and successful, it is important to understand what causes humans to trust robots more or

As robotics technology advances, robots are being created for use in situations where they collaborate with humans on complex tasks.  For this to be safe and successful, it is important to understand what causes humans to trust robots more or less during a collaborative task.  This research project aims to investigate human-robot trust through a collaborative game of logic that can be played with a human and a robot together. This thesis details the development of a game of logic that could be used for this purpose. The game of logic is based upon a popular game in AI research called ‘Wumpus World’. The original Wumpus World game was a low-interactivity game to be played by humans alone. In this project, the Wumpus World game is modified for a high degree of interactivity with a human player, while also allowing the game to be played simultaneously by an AI algorithm.

Contributors

Agent

Created

Date Created
2018-05

152349-Thumbnail Image.png

Closed-form inverse kinematic solution for anthropomorphic motion in redundant robot arms

Description

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective

As robots are increasingly migrating out of factories and research laboratories and into our everyday lives, they should move and act in environments designed for humans. For this reason, the need of anthropomorphic movements is of utmost importance. The objective of this thesis is to solve the inverse kinematics problem of redundant robot arms that results to anthropomorphic configurations. The swivel angle of the elbow was used as a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Using kinematic data recorded from human subjects during every-day life tasks, the linear sensorimotor transformation model was validated and used to estimate the swivel angle, given the desired end-effector position. Defining the desired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed method was tested with an anthropomorphic redundant robot arm and the computed motion profiles were compared to the ones of the human subjects. This thesis shows that the method computes anthropomorphic configurations for the robot arm, even if the robot arm has different link lengths than the human arm and starts its motion at random configurations.

Contributors

Agent

Created

Date Created
2013

152536-Thumbnail Image.png

Human-robot cooperation: communication and leader-follower dynamics

Description

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.

Contributors

Agent

Created

Date Created
2014

137772-Thumbnail Image.png

An Investigation of Human Error Correction in Anthropomorphic Robotic Armatures

Description

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.

Contributors

Agent

Created

Date Created
2013-05

153091-Thumbnail Image.png

Planning challenges in human-robot teaming

Description

As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work

As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application scenarios are characterized by a need to leverage the strengths of each agent as part of a unified team to reach those common goals. To ensure that the robotic agent is truly a contributing team-member, it must exhibit some degree of autonomy in achieving goals that have been delegated to it. Indeed, a significant portion of the utility of such human-robot teams derives from the delegation of goals to the robot, and autonomy on the part of the robot in achieving those goals. In order to be considered truly autonomous, the robot must be able to make its own plans to achieve the goals assigned to it, with only minimal direction and assistance from the human.

Automated planning provides the solution to this problem -- indeed, one of the main motivations that underpinned the beginnings of the field of automated planning was to provide planning support for Shakey the robot with the STRIPS system. For long, however, automated planners suffered from scalability issues that precluded their application to real world, real time robotic systems. Recent decades have seen a gradual abeyance of those issues, and fast planning systems are now the norm rather than the exception. However, some of these advances in speedup and scalability have been achieved by ignoring or abstracting out challenges that real world integrated robotic systems must confront.

In this work, the problem of planning for human-hobot teaming is introduced. The central idea -- the use of automated planning systems as mediators in such human-robot teaming scenarios -- and the main challenges inspired from real world scenarios that must be addressed in order to make such planning seamless are presented: (i) Goals which can be specified or changed at execution time, after the planning process has completed; (ii) Worlds and scenarios where the state changes dynamically while a previous plan is executing; (iii) Models that are incomplete and can be changed during execution; and (iv) Information about the human agent's plan and intentions that can be used for coordination. These challenges are compounded by the fact that the human-robot team must execute in an open world, rife with dynamic events and other agents; and in a manner that encourages the exchange of information between the human and the robot. As an answer to these challenges, implemented solutions and a fielded prototype that combines all of those solutions into one planning system are discussed. Results from running this prototype in real world scenarios are presented, and extensions to some of the solutions are offered as appropriate.

Contributors

Agent

Created

Date Created
2014

153240-Thumbnail Image.png

Robotic augmentation of human locomotion for high speed running

Description

Human running requires extensive training and conditioning for an individual to maintain high speeds (greater than 10mph) for an extended duration of time. Studies have shown that running at peak speeds generates a high metabolic cost due to the

Human running requires extensive training and conditioning for an individual to maintain high speeds (greater than 10mph) for an extended duration of time. Studies have shown that running at peak speeds generates a high metabolic cost due to the use of large muscle groups in the legs associated with the human gait cycle. Applying supplemental external and internal forces to the human body during the gait cycle has been shown to decrease the metabolic cost for walking, allowing individuals to carry additional weight and walk further distances. Significant research has been conducted to reduce the metabolic cost of walking, however, there are few if any documented studies that focus specifically on reducing the metabolic cost associated with high speed running. Three mechanical systems were designed to work in concert with the human user to decrease metabolic cost and increase the range and speeds at which a human can run.

The methods of design require a focus on mathematical modeling, simulations, and metabolic cost. Mathematical modeling and simulations are used to aid in the design process of robotic systems and metabolic testing is regarded as the final analysis process to determine the true effectiveness of robotic prototypes. Metabolic data, (VO2) is the volumetric consumption of oxygen, per minute, per unit mass (ml/min/kg). Metabolic testing consists of analyzing the oxygen consumption of a test subject while performing a task naturally and then comparing that data with analyzed oxygen consumption of the same task while using an assistive device.

Three devices were designed and tested to augment high speed running. The first device, AirLegs V1, is a mostly aluminum exoskeleton with two pneumatic linear actuators connecting from the lower back directly to the user's thighs, allowing the device to induce a torque on the leg by pushing and pulling on the user's thigh during running. The device also makes use of two smaller pneumatic linear actuators which drive cables connecting to small lever arms at the back of the heel, inducing a torque at the ankles. Device two, AirLegs V2, is also pneumatically powered but is considered to be a soft suit version of the first device. It uses cables to interface the forces created by actuators located vertically on the user's back. These cables then connect to the back of the user's knees resulting in greater flexibility and range of motion of the legs. Device three, a Jet Pack, produces an external force against the user's torso to propel a user forward and upward making it easier to run. Third party testing, pilot demonstrations and timed trials have demonstrated that all three of the devices effectively reduce the metabolic cost of running below that of natural running with no device.

Contributors

Agent

Created

Date Created
2014

153498-Thumbnail Image.png

On ehancing myoelectric interfaces by exploiting motor learning and flexible muscle synergies

Description

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.

Contributors

Agent

Created

Date Created
2015

151173-Thumbnail Image.png

A high level language for human robot interaction

Description

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to environments too dangerous for humans. For such human-robot interaction, natural language is considered a good communication medium as it allows humans with less training about the robot's internal language to be able to command and interact with the robot. However, any natural language communication from the human needs to be translated to a formal language that the robot can understand. Similarly, before the robot can communicate (in natural language) with the human, it needs to formulate its communique in some formal language which then gets translated into natural language. In this paper, I develop a high level language for communication between humans and robots and demonstrate various aspects through a robotics simulation. These language constructs borrow some ideas from action execution languages and are grounded with respect to simulated human-robot interaction transcripts.

Contributors

Agent

Created

Date Created
2012