Matching Items (3)
Filtering by

Clear all filters

135359-Thumbnail Image.png
Description
Background: Noninvasive MRI methods that can accurately detect subtle brain changes are highly desirable when studying disease-modifying interventions. Texture analysis is a novel imaging technique which utilizes the extraction of a large number of image features with high specificity and predictive power. In this investigation, we use texture analysis to

Background: Noninvasive MRI methods that can accurately detect subtle brain changes are highly desirable when studying disease-modifying interventions. Texture analysis is a novel imaging technique which utilizes the extraction of a large number of image features with high specificity and predictive power. In this investigation, we use texture analysis to assess and classify age-related changes in the right and left hippocampal regions, the areas known to show some of the earliest change in Alzheimer's disease (AD). Apolipoprotein E (APOE)'s e4 allele confers an increased risk for AD, so studying differences in APOE e4 carriers may help to ascertain subtle brain changes before there has been an obvious change in behavior. We examined texture analysis measures that predict age-related changes, which reflect atrophy in a group of cognitively normal individuals. We hypothesized that the APOE e4 carriers would exhibit significant age-related differences in texture features compared to non-carriers, so that the predictive texture features hold promise for early assessment of AD. Methods: 120 normal adults between the ages of 32 and 90 were recruited for this neuroimaging study from a larger parent study at Mayo Clinic Arizona studying longitudinal cognitive functioning (Caselli et al., 2009). As part of the parent study, the participants were genotyped for APOE genetic polymorphisms and received comprehensive cognitive testing every two years, on average. Neuroimaging was done at Barrow Neurological Institute and a 3D T1-weighted magnetic resonance image was obtained during scanning that allowed for subsequent texture analysis processing. Voxel-based features of the appearance, structure, and arrangement of these regions of interest were extracted utilizing the Mayo Clinic Python Texture Analysis Pipeline (pyTAP). Algorithms applied in feature extraction included Grey-Level Co-Occurrence Matrix (GLCM), Gabor Filter Banks (GFB), Local Binary Patterns (LBP), Discrete Orthogonal Stockwell Transform (DOST), and Laplacian-of-Gaussian Histograms (LoGH). Principal component (PC) analysis was used to reduce the dimensionality of the algorithmically selected features to 13 PCs. A stepwise forward regression model was used to determine the effect of APOE status (APOE e4 carriers vs. noncarriers), and the texture feature principal components on age (as a continuous variable). After identification of 5 significant predictors of age in the model, the individual feature coefficients of those principal components were examined to determine which features contributed most significantly to the prediction of an aging brain. Results: 70 texture features were extracted for the two regions of interest in each participant's scan. The texture features were coded as 70 initial components andwere rotated to generate 13 principal components (PC) that contributed 75% of the variance in the dataset by scree plot analysis. The forward stepwise regression model used in this exploratory study significantly predicted age, accounting for approximately 40% of the variance in the data. The regression model revealed 5 significant regressors (2 right PC's, APOE status, and 2 left PC by APOE interactions). Finally, the specific texture features that contributed to each significant PCs were identified. Conclusion: Analysis of image texture features resulted in a statistical model that was able to detect subtle changes in brain integrity associated with age in a group of participants who are cognitively normal, but have an increased risk of developing AD based on the presence of the APOE e4 phenotype. This is an important finding, given that detecting subtle changes in regions vulnerable to the effects of AD in patients could allow certain texture features to serve as noninvasive, sensitive biomarkers predictive of AD. Even with only a small number of patients, the ability for us to determine sensitive imaging biomarkers could facilitate great improvement in speed of detection and effectiveness of AD interventions..
ContributorsSilva, Annelise Michelle (Author) / Baxter, Leslie (Thesis director) / McBeath, Michael (Committee member) / Presson, Clark (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137504-Thumbnail Image.png
Description
The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.
ContributorsGutierrez, Alexander Jay (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Viswanathan, Adityavikram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
132654-Thumbnail Image.png
Description
The entirely soft-tissue anatomy of the octopus arm provides the animal with a large amount of freedom of movement, while still allowing the specimen to support itself despite the lack of a skeletal system. This is made possible through the use of various muscle layers within the octopus arm, which

The entirely soft-tissue anatomy of the octopus arm provides the animal with a large amount of freedom of movement, while still allowing the specimen to support itself despite the lack of a skeletal system. This is made possible through the use of various muscle layers within the octopus arm, which act as muscular hydrostats. Magnetic Resonance imaging of the octopus arm was employed to view the muscle layers within the octopus arm and observe trends and differences in these layers at the proximal, middle, and distal portions of the arms. A total of 39 arms from 6 specimens were imaged to give 112 total imaged sections (38 proximal, 37 middle, 37 distal). Significant increases in both the internal longitudinal muscle layer and the nervous core were found between the proximal and middle, proximal and distal, and middle and distal sections of the arms. This could reflect selection for these structures distally in the octopus arm for predator or other noxious stimuli avoidance. A significant decrease in the transverse muscle layer was found in the middle and distal sections of the arms. This could reflect selection for elongation in the proximal portion of the octopus arm or could be the result of selection for the internal longitudinal muscle layer and nervous core distally. Previous studies on Octopus vulgaris showed a preference for using the proximal arms in the pushing movement of crawling and a preference for using the anterior arms in exploring behaviors (Levy et al., 2015 and Byrne et al., 2006). Differences between the anterior and posterior arms for the transverse muscle layer, internal longitudinal muscle layer, and the nervous core were insignificant, reflecting a lack of structure-function relationships. This could also be due to a low sample size. Differences between the left and right arms for the transverse muscle layer, internal longitudinal muscle layer, and the nervous core were insignificant, supporting previous evidence that left versus right eye and arm preferences in octopus are not population-wide, but individual. Some slight trends can be found for individual arms, but the sample size was too small to make definitive statements regarding differences among specific arms.
ContributorsRoy, Cayla C (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamid (Committee member) / Cherry, Brian (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05