Matching Items (2)

Filtering by

Clear all filters

134966-Thumbnail Image.png

Motor system integrity in older adults with autism spectrum disorder

Description

Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may

Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to study motor behavior and underlying brain integrity. Using a finger tapping task, motor performance was measured in a cross-sectional study comparing older adults with ASD and age-matched typically developing (TD) controls. We hypothesized that older adults with ASD would show poorer motor performance (slower finger tapping speed). We also hypothesized that underlying brain differences, measured using MRI, in regions associated with motor function including the primary motor cortex, basal ganglia, and cerebellum, as well as the white matter connecting tracts would exist between groups and be associated with the proposed disparity in motor performance.

Method: A finger oscillation (Finger Tapping) test was administered to both ASD (n=21) and TD (n=20) participants aged 40-70 year old participants as a test of fine motor speed. Magnetic resonance (MR) images were collected using a Philips 3 Tesla scanner. 3D T1-weighted and diffusion tensor images (DTI) were obtained to measure gray and white matter volume and white matter integrity, respectively. FreeSurfer, an automated volumetric measurement software, was used to determine group volumetric differences. Mean, radial, and axial diffusivity, fractional anisotropy, and local diffusion homogeneity were measured from DTI images using PANDA software in order to evaluate white matter integrity.

Results: All participants were right-handed and there were no significant differences in demographic variables (ASD/TD, means) including age (51.9/49.1 years), IQ (107/112) and years education (15/16). Total brain volume was not significantly different between groups. No statistically significant group differences were observed in finger tapping speed. ASD participants compared to TDs showed a trend of slower finger tapping (taps/10 seconds) speed on the dominant hand (47.00 (±11.2) vs. (50.5 (±6.6)) and nondominant hand (44.6 (±7.6) vs. (47.2 (±6.6)). However, a large degree of variability was observed in the ASD group, and the Levene’s test for homogeneity of variance approached significance (p=0.053) on the dominant, but not the nondominant, hand. No significant group differences in gray matter regional volume were found for brain regions associated with performing motor tasks. In contrast, group differences were found on several measures of white matter including the corticospinal tract, anterior internal capsule and middle cerebellar peduncle. Brain-behavior correlations showed that dominant finger tapping speed correlated with left hemisphere white matter integrity of the corticospinal tract and right hemisphere cerebellar white matter in the ASD group.

Conclusions: No significant differences were observed between groups in finger tapping speed but the high degree of variability seen in the ASD group. Differences in motor performance appear to be associated with observed brain differences, particularly in the integrity of white matter tracts contributing to motor functioning.

Contributors

Agent

Created

Date Created
  • 2017-05

157084-Thumbnail Image.png

Improving sentence comprehension post-stroke using neuroimaging and neuropsychological approaches

Description

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of attention (alerting, orienting, executive control) were measured in persons with aphasia and matched-controls using visual and auditory versions of the well-studied Attention Network Test. Experiment 1b then explored the neural resources supporting each component of attention in the visual and auditory modalities in chronic stroke participants. The results from Experiment 1a indicate that alerting, orienting, and executive control are uniquely affected by presentation modality. The lesion-symptom mapping results from Experiment 1b associated the left angular gyrus with visual executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area (pars opercularis) with auditory orienting attention post-stroke. Overall, these findings indicate that perceptual modality may impact the lateralization of some aspects of attention, thus auditory attention may be more susceptible to impairment after a left hemisphere stroke.

Prosody, rhythm and pitch changes associated with spoken language may improve spoken language comprehension in persons with aphasia by recruiting intact cognitive abilities (e.g., attention and working memory) and their associated non-lesioned brain regions post-stroke. Therefore, Experiment 2 explored the relationship between cognition, two unique prosody manipulations, lesion location, and auditory sentence comprehension in persons with chronic stroke and matched-controls. The combined results from Experiment 2a and 2b indicate that stroke participants with better auditory orienting attention and a specific left fronto-parietal network intact had greater comprehension of sentences spoken with sentence prosody. For list prosody, participants with deficits in auditory executive control and/or short-term memory and the left angular gyrus and globus pallidus relatively intact, demonstrated better comprehension of sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that following a left hemisphere stroke, individuals need good auditory attention and an intact left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive deficits are present and this fronto-parietal network is damaged, list prosody may be more beneficial.

Contributors

Agent

Created

Date Created
  • 2019