Matching Items (11)
Filtering by

Clear all filters

157084-Thumbnail Image.png
Description
Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of

Cognitive deficits often accompany language impairments post-stroke. Past research has focused on working memory in aphasia, but attention is largely underexplored. Therefore, this dissertation will first quantify attention deficits post-stroke before investigating whether preserved cognitive abilities, including attention, can improve auditory sentence comprehension post-stroke. In Experiment 1a, three components of attention (alerting, orienting, executive control) were measured in persons with aphasia and matched-controls using visual and auditory versions of the well-studied Attention Network Test. Experiment 1b then explored the neural resources supporting each component of attention in the visual and auditory modalities in chronic stroke participants. The results from Experiment 1a indicate that alerting, orienting, and executive control are uniquely affected by presentation modality. The lesion-symptom mapping results from Experiment 1b associated the left angular gyrus with visual executive control, the left supramarginal gyrus with auditory alerting, and Broca’s area (pars opercularis) with auditory orienting attention post-stroke. Overall, these findings indicate that perceptual modality may impact the lateralization of some aspects of attention, thus auditory attention may be more susceptible to impairment after a left hemisphere stroke.

Prosody, rhythm and pitch changes associated with spoken language may improve spoken language comprehension in persons with aphasia by recruiting intact cognitive abilities (e.g., attention and working memory) and their associated non-lesioned brain regions post-stroke. Therefore, Experiment 2 explored the relationship between cognition, two unique prosody manipulations, lesion location, and auditory sentence comprehension in persons with chronic stroke and matched-controls. The combined results from Experiment 2a and 2b indicate that stroke participants with better auditory orienting attention and a specific left fronto-parietal network intact had greater comprehension of sentences spoken with sentence prosody. For list prosody, participants with deficits in auditory executive control and/or short-term memory and the left angular gyrus and globus pallidus relatively intact, demonstrated better comprehension of sentences spoken with list prosody. Overall, the results from Experiment 2 indicate that following a left hemisphere stroke, individuals need good auditory attention and an intact left fronto-parietal network to benefit from typical sentence prosody, yet when cognitive deficits are present and this fronto-parietal network is damaged, list prosody may be more beneficial.
ContributorsLaCroix, Arianna (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Braden, B. Blair (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2019
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136526-Thumbnail Image.png
Description
The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections

The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections examine reasons and methods for the oboe's invention, as well as possible causes of its migration from its starting place in France to other European countries, as well as many other places around the world. I conclude that the oboe was invented to suit the needs of composers in the court of Louis XIV, and that it was brought to other countries by French performers who left France for many reasons, including to escape from the authority of composer Jean-Baptiste Lully and in some cases to promote French culture in other countries.
ContributorsCook, Mary Katherine (Author) / Schuring, Martin (Thesis director) / Micklich, Albie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor)
Created2015-05
137504-Thumbnail Image.png
Description
The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.
ContributorsGutierrez, Alexander Jay (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Viswanathan, Adityavikram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
137354-Thumbnail Image.png
Description
The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with

The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with tissue hypoxia - of the imaged tissue, from concentration data acquired with dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) procedure. Data from two separate DCE-MRI experiments, performed in the past, using a standard contrast agent and a hypoxia-binding agent respectively, were analyzed. The results of the analysis demonstrated that the models used may provide novel characterization of the tumor tissue properties. Future research will work to further characterize the physical significance of the estimated parameters, particularly to provide quantitative oxygenation data for the imaged tissue.
ContributorsMartin, Jonathan Michael (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-12
137044-Thumbnail Image.png
Description
In applications such as Magnetic Resonance Imaging (MRI), data are acquired as Fourier samples. Since the underlying images are only piecewise smooth, standard recon- struction techniques will yield the Gibbs phenomenon, which can lead to misdiagnosis. Although filtering will reduce the oscillations at jump locations, it can often have the

In applications such as Magnetic Resonance Imaging (MRI), data are acquired as Fourier samples. Since the underlying images are only piecewise smooth, standard recon- struction techniques will yield the Gibbs phenomenon, which can lead to misdiagnosis. Although filtering will reduce the oscillations at jump locations, it can often have the adverse effect of blurring at these critical junctures, which can also lead to misdiagno- sis. Incorporating prior information into reconstruction methods can help reconstruct a sharper solution. For example, compressed sensing (CS) algorithms exploit the expected sparsity of some features of the image. In this thesis, we develop a method to exploit the sparsity in the edges of the underlying image. We design a convex optimization problem that exploits this sparsity to provide an approximation of the underlying image. Our method successfully reduces the Gibbs phenomenon with only minimal "blurring" at the discontinuities. In addition, we see a high rate of convergence in smooth regions.
ContributorsWasserman, Gabriel Kanter (Author) / Gelb, Anne (Thesis director) / Cochran, Doug (Committee member) / Archibald, Rick (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134966-Thumbnail Image.png
Description
Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to

Background: Gait disturbance, clumsiness, and other mild movement problems are often observed in children with autism spectrum disorder (ASD) (Maurer and Damasio 1982). As the brain ages, these symptoms may persist or worsen in late adulthood in those diagnosed with ASD. This study focused on older adults with ASD to study motor behavior and underlying brain integrity. Using a finger tapping task, motor performance was measured in a cross-sectional study comparing older adults with ASD and age-matched typically developing (TD) controls. We hypothesized that older adults with ASD would show poorer motor performance (slower finger tapping speed). We also hypothesized that underlying brain differences, measured using MRI, in regions associated with motor function including the primary motor cortex, basal ganglia, and cerebellum, as well as the white matter connecting tracts would exist between groups and be associated with the proposed disparity in motor performance.

Method: A finger oscillation (Finger Tapping) test was administered to both ASD (n=21) and TD (n=20) participants aged 40-70 year old participants as a test of fine motor speed. Magnetic resonance (MR) images were collected using a Philips 3 Tesla scanner. 3D T1-weighted and diffusion tensor images (DTI) were obtained to measure gray and white matter volume and white matter integrity, respectively. FreeSurfer, an automated volumetric measurement software, was used to determine group volumetric differences. Mean, radial, and axial diffusivity, fractional anisotropy, and local diffusion homogeneity were measured from DTI images using PANDA software in order to evaluate white matter integrity.

Results: All participants were right-handed and there were no significant differences in demographic variables (ASD/TD, means) including age (51.9/49.1 years), IQ (107/112) and years education (15/16). Total brain volume was not significantly different between groups. No statistically significant group differences were observed in finger tapping speed. ASD participants compared to TDs showed a trend of slower finger tapping (taps/10 seconds) speed on the dominant hand (47.00 (±11.2) vs. (50.5 (±6.6)) and nondominant hand (44.6 (±7.6) vs. (47.2 (±6.6)). However, a large degree of variability was observed in the ASD group, and the Levene’s test for homogeneity of variance approached significance (p=0.053) on the dominant, but not the nondominant, hand. No significant group differences in gray matter regional volume were found for brain regions associated with performing motor tasks. In contrast, group differences were found on several measures of white matter including the corticospinal tract, anterior internal capsule and middle cerebellar peduncle. Brain-behavior correlations showed that dominant finger tapping speed correlated with left hemisphere white matter integrity of the corticospinal tract and right hemisphere cerebellar white matter in the ASD group.

Conclusions: No significant differences were observed between groups in finger tapping speed but the high degree of variability seen in the ASD group. Differences in motor performance appear to be associated with observed brain differences, particularly in the integrity of white matter tracts contributing to motor functioning.
ContributorsDeatherage, Brandon R. (Co-author) / Braden, B. Blair (Co-author, Committee member) / Smith, Christopher J. (Co-author) / McBeath, Michael (Co-author, Thesis director) / Thompson, Aimee M. (Co-author) / Wood, Emily G. (Co-author) / McGee, Samuel C. (Co-author) / Sinha, Krishna (Co-author) / Baxter, Leslie (Co-author, Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of Information Systems (Contributor)
Created2017-05
137687-Thumbnail Image.png
Description
The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as those defining the locations of tumors. It can also be an invaluable tool in the amelioration of the negative effects of the Gibbs phenomenon on reconstructions of functions with discontinuities or images in multi-dimensions with internal edges. In this thesis we develop a novel method for recovering edges from non-uniform Fourier data by adapting the "convolutional gridding" method of function reconstruction. We analyze the behavior of the method in one dimension and then extend it to two dimensions on several examples.
ContributorsMartinez, Adam (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Platte, Rodrigo (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05