Matching Items (5)
Filtering by

Clear all filters

151911-Thumbnail Image.png
Description
Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts,

Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4+, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2-. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).
ContributorsDoudrick, Kyle (Author) / Westerhoff, Paul (Thesis advisor) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2013
151118-Thumbnail Image.png
Description
Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2)

Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2) is such a process. However, this process is presently inefficient and unsuitable for industrial applications. A step toward making this process more effective is to alter TiO2 based photocatalysts to improve their activity. The interactions of CO2 with oxygen-deficient and unmodified (210) surfaces of brookite TiO2 were studied using first-principle calculations on cluster systems. Charge and spin density analyses were implemented to determine if charge transfer to the CO2 molecule occurred and whether this charge transfer was comparable to that seen with the oxygen-deficient and unmodified anatase TiO2 (101) surfaces. Although the unmodified brookite (210) surface provided energetically similar CO2 interactions as compared to the unmodified anatase (101) surface, the unmodified brookite surface had negligible charge transfer to the CO2 molecule. This result suggests that unmodified brookite is not a suitable catalyst for the reduction of CO2. However, the results also suggest that modification of the brookite surface through the creation of oxygen vacancies may lead to enhancements in CO2 reduction. The computational results were supported with laboratory data for CO2 interaction with perfect brookite and oxygen-deficient brookite. The laboratory data, generated using diffuse reflectance Fourier transform infrared spectroscopy, confirms the presence of CO2- on only the oxygen-deficient brookite. Additional computational work was performed on I-doped anatase (101) and I-doped brookite (210) surface clusters. Adsorption energies and charge and spin density analyses were performed and the results compared. While charge and spin density analyses showed minute charge transfer to CO2, the calculated adsorption energies demonstrated an increased affinity for CO2adsorption onto the I-doped brookite surface. Gathering the results from all calculations, the computational work on oxygen-deficient, I-doped, and unmodified anatase and brookite surface structures suggest that brookite TiO2 is a potential photocatalysts for CO2 photoreduction.
ContributorsRodriguez, Monique M (Author) / Andino, Jean M (Thesis advisor) / Nielsen, David R (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2012
151268-Thumbnail Image.png
Description
The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the

The mitigation and conversion of carbon dioxide (CO2) to more useful carbon chemicals is a research topic that is at the forefront of current engineering and sustainability applications. Direct photocatalytic reduction of CO2 with water (H2O) vapor to C1-C4 hydrocarbons has significant potential in setting substantial groundwork for meeting the increasing energy demands with minimal environmental impact. Previous studies indicate that titanium dioxide (TiO2) containing materials serve as the best photocatalyst for CO2 and H2O conversion to higher-value products. An understanding of the CO2-H2O reaction mechanism over TiO2 materials allows one to increase the yield of certain products such as carbon monoxide (CO) and methane (CH4). The basis of the work discussed in this thesis, investigates the interaction of small molecules (CO, CH4,H2O) over the least studied TiO2 polymorph - brookite. Using the Gaussian03 computational chemistry software package, density functional theory (DFT) calculations were performed to investigate the adsorption behavior of CO, H2O, and CH4 gases on perfect and oxygen-deficient brookite TiO2 (210) and anatase TiO2 (101) surfaces. The most geometrically and energetically favorable configurations of these molecules on the TiO2 surfaces were computed using the B3LYP/6-31+G(2df,p) functional/basis set. Calculations from this theoretical study indicate all three molecules adsorb more favorably onto the brookite TiO2 (210) surface. Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was used to investigate the adsorption and desorption behavior of H2O and CH4 on Evonik P25 TiO2. Results from the experimental studies and theoretical work will serve as a significant basis for reaction prediction on brookite TiO2 surfaces.
ContributorsRollins, Selisa F (Author) / Andino, Jean M (Thesis advisor) / Dai, Lenore L (Committee member) / Forzani, Erica S (Committee member) / Arizona State University (Publisher)
Created2012
155778-Thumbnail Image.png
Description
Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic

Contamination of drinking water supplies from oxo-anion pollutants necessitates treatment prior to potable use. This dissertation aims to inform and improve light delivery (emission spectra, radiant intensity, reactor configuration) in order to enhance the photocatalytic reduction of hexavalent chromium (Cr(VI)) and nitrate, two common oxo-anions in drinking water, and photocatalytic oxidation of two model organic pollutants (methylene blue, (MB) and para-chlorobenzoic acid (pCBA)). By varying the photon fluence dose, two metrics (contaminant quantum yield (Φ), and electrical energy per order (EEO)) were used to assess photocatalytic reactor performance. A detailed literature review and experimental results demonstrated how different irradiance sources with variable intensity and emission spectra synergistically enhanced contaminant removal by a coupled photolytic/photocatalytic reaction mechanism. Cr(VI) was photocatalytically reduced on TiO2 and formed Cr(OH)3(s) in a large-scale slurry reactor, but Cr(III) was then photolyzed and reformed Cr(VI). UV light also led to photo-aggregation of TiO2 which improved its recovery by the ceramic membrane within the reactor. For nitrate reduction, light source emission spectra and fluence dose delineate the preferred pathways as intermediates were reduced via wavelength-dependent mechanisms. HONO was identified as a key nitrate reduction intermediate, which was reduced photocatalytically (UV wavelengths) and/or readily photolyzed at 365nm, to yield nitrogen gases. Photocatalytic nitrate reduction efficiency was higher for discrete wavelength irradiation than polychromatic irradiation. Light delivery through aqueous media to the catalyst surface limits efficiency of slurry-based photocatalysts because absorption and scattering of light in nanomaterial slurries decreases effective photon transmittance and minimizes photolytic reactions. The use of optical fibers coupled to light emitting diodes (OF-LED) with immobilized catalyst demonstrated higher performance compared to slurry systems. OF-LED increased Φ for MB degradation by increasing direct photon delivery to the photocatalyst. Design of OF-LED reactors using bundled optical fibers demonstrated photocatalytic pCBA removal with high Φ and reduced EEO due to increased surface area and catalytic sites compared to single OF/LED couples. This work advances light delivery as well as the suspension and attachment of nanoparticles in photocatalytic water treatment for selective transformation of oxo-anions and organic compounds to innocuous species.
ContributorsTugaoen, Heather O'Neal (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Thesis advisor) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2017
187839-Thumbnail Image.png
Description
Generally, porous structures are nano-enabled with a high loading of nanoparticles (NPs) to enhance adsorption capacity, but pore blockage plays a determinant role in kinetics in this approach. The goal of this study is to investigate the effect of NPs loading on the adsorption kinetics and capacity of titanium dioxide

Generally, porous structures are nano-enabled with a high loading of nanoparticles (NPs) to enhance adsorption capacity, but pore blockage plays a determinant role in kinetics in this approach. The goal of this study is to investigate the effect of NPs loading on the adsorption kinetics and capacity of titanium dioxide (TiO2). To accomplish this, side-emitting optical fibers impregnated with different mass loadings of TiO2 (Ti-NIFs) were developed and characterized. Additionally, taking advantage of the use of optical fibers, the potential influence of ultraviolet light (UV) irradiation in arsenate adsorption over TiO2 was studied. The adsorption kinetics and capacity of Ti-NIFs were compared with slurry TiO2 nanoparticles in batch reactors. Arsenate adsorption was evaluated under both UV irradiation and dark conditions. The Ti-NIF with the lowest TiO2 loading showed comparable adsorption rate to NPs in suspension. Higher loadings resulted in high mass-transfer limitations. Interestingly, the normalized adsorption capacity of the produced Ti-NIFs maintained the adsorption capacity similar as they were freely dispersed. The experiments showed that UV has no influence in arsenate adsorption onto TiO2, contrary to previous literature indicating a positive effect, which was likely due to pH drift. Overall, this study shows that loadings of nanoparticles below 1% effectively enhance nano-enabled surfaces' performance.
ContributorsGonzalez Rodriguez, Jose Ricardo (Author) / Westerhoff, Paul (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2023