Matching Items (5)
Filtering by

Clear all filters

132878-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsNossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132879-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three different methods of underwater communication were found, but only one, acoustics, was feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience.
ContributorsHocken, Chase (Co-author) / Nossaman, Grace (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132880-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsPadilla, Bryan (Co-author) / Nossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05