Matching Items (20)
Filtering by

Clear all filters

153520-Thumbnail Image.png
Description
The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid

The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, ELVIRA. Along with these geometric interface reconstruction algorithms, there exist several volume-of-fluid transportation algorithms. This paper will discuss two operator-splitting advection algorithms and an unsplit advection algorithm. Using these three interface reconstruction algorithms, and three advection algorithms, a comparison will be drawn to see how different combinations of these algorithms perform with respect to accuracy as well as computational expense.
ContributorsKedelty, Dominic (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
153123-Thumbnail Image.png
Description
Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an

Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface.

A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis by means of input parameters. Once the surface representation is smoothened as desired, it can be extracted as a standard levelset scalar isosurface.

The approach presented in this thesis is also coupled to a fully unstructured Cartesian mesh generation library with built-in localized adaptive mesh refinement (AMR) capabilities, thereby ensuring lower computational cost while also providing sufficient resolution. Future work will focus on implementing tetrahedral cuts to the base hexahedral mesh structure in order to extract a fully unstructured hexahedra-dominant mesh describing the STL geometry, which can be used for fluid flow simulations.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2014
150329-Thumbnail Image.png
Description
The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum

The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach is validated by comparison with computations of the flow over a smooth sphere. Simulations are performed at Reynolds numbers of 2.5 × 104 and 1.1 × 105 based on the diameter of the ball and the freestream speed and using grids comprised of more than 1.14 × 109 points. Flow visualizations reveal the location of separation, as well as the delay of complete detachment. Predictions of the aerodynamic forces at both Reynolds numbers are in reasonable agreement with measurements. Energy spectra of the velocity quantify the dominant frequencies of the flow near separation and in the wake. Time-averaged statistics reveal characteristic physical patterns in the flow as well as local trends within dimples. A mechanism of drag reduction due to the dimples is confirmed, and metrics for dimple optimization are proposed.
ContributorsSmith, Clinton E (Author) / Squires, Kyle D (Thesis advisor) / Balaras, Elias (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Stanzione, Daniel C (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
Description
Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement by N-pulse PIVA is studied using particle tracking (i.e. N-pulse PTVA), and it is shown that an enhancement of at least another order of magnitude is achievable. Furthermore, the capability of N-pulse PIVA to measure unsteady acceleration and force is demonstrated in the context of an oscillating cylinder interacting with surrounding fluid. The cylinder motion, the fluid velocity and acceleration, and the fluid force exerted on the cylinder are successfully measured. On the other hand, a key issue of multi-camera registration for the implementation of N-pulse PIVA is addressed with an accuracy of 0.001 pixel. Subsequently, two applications of N-pulse PTVA to complex flows and turbulence are presented. A novel 8-pulse PTVA analysis was developed and validated to accurately resolve particle unsteady drag in post-shock flows. It is found that the particle drag is substantially elevated from the standard drag due to flow unsteadiness, and a new drag correlation incorporating particle Reynolds number and unsteadiness is desired upon removal of the uncertainty arising from non-uniform particle size. Next, the estimation of turbulence statistics utilizes the ensemble average of 4-pulse PTV data within a small domain of an optimally determined size. The estimation of mean velocity, mean velocity gradient and isotropic dissipation rate are presented and discussed by means of synthetic turbulence, as well as a tomographic measurement of turbulent boundary layer. The results indicate the superior capability of the N-pulse PTV based method to extract high-spatial-resolution high-accuracy turbulence statistics.
ContributorsDing, Liuyang (Author) / Adrian, Ronald J (Thesis advisor) / Frakes, David (Committee member) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2018
157458-Thumbnail Image.png
Description
This work helps to explain the drag reduction mechanisms at low and moderate turbulent Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall oscillations are observed on the turbulence in both the near wall and the bulk region. Analysis of the average Reynolds

This work helps to explain the drag reduction mechanisms at low and moderate turbulent Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall oscillations are observed on the turbulence in both the near wall and the bulk region. Analysis of the average Reynolds Stresses at various phases of the flow is provided along with probability density functions of the fluctuating components of velocity and vorticity. The flow is also visualized to observe, qualitatively, changes in the total and fluctuating field of velocity and vorticity. Linear Stochastic Estimation is used to create a conditional eddy (associated with stress production) in the flow and visualize the effects of transverse wall oscillations on hairpin growth, auto-generation and structure.
ContributorsCoxe, Daniel (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Thesis advisor) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2019
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
157292-Thumbnail Image.png
Description
Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded as a very high-dimensional generalization of the dynamic approach used with some traditional prescribed closure models, or as a type of “data-driven” turbulence closure in which machine- learning methods are used with internal training data obtained at a test-filter scale at each point and time in the simulation to discover the local closure representation.

In this study, a priori tests were performed to develop accurate and efficient implementations of autonomic closure based on particular generalized representations and parameters associated with the local system identification of the turbulence state. These included the relative number of training points and bounding box size, which impact computational cost and generalizability of coefficients in the representation from the test scale to the LES scale. The focus was on studying impacts of these factors on the resulting accuracy and efficiency of autonomic closure for the subgrid stress. Particular attention was paid to the associated subgrid production field, including its structural features in which large forward and backward energy transfer are concentrated.

More than five orders of magnitude reduction in computational cost of autonomic closure was achieved in this study with essentially no loss of accuracy, primarily by using efficient frame-invariant forms for generalized representations that greatly reduce the number of degrees of freedom. The recommended form is a 28-coefficient representation that provides subgrid stress and production fields that are far more accurate in terms of structure and statistics than are traditional prescribed closure models.
ContributorsKshitij, Abhinav (Author) / Dahm, Werner J.A. (Thesis advisor) / Herrmann, Marcus (Committee member) / Hamlington, Peter E (Committee member) / Peet, Yulia (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
Description
The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four

The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and two Error Minimization Methods by Pilliod Jr and Puckett (2004). The observed order of accuracy was first order in all cases except when unsplit methods and error minimization methods were used consecutively in each iteration, which resulted in second-order accuracy on the shape error convergence. The Averaged Unsplit Eulerian-Lagrangian Advection (AUELA) did produce first-order accuracy but that was due to a temporal error in the numerical setup. The main unsplit methods, Unsplit Eulerian Advection (UEA) and Unsplit Lagrangian Advection (ULA), preserve mass and momentum and require geometric clipping to solve two-phase fluid flows. The Unsplit Lagrangian Advection (ULA) can allow for small divergence in the velocity field perhaps saving time on the iterative solver of the variable coefficient Poisson System.
ContributorsAnsari, Adil (M.S.) (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019
157240-Thumbnail Image.png
Description
The dynamics of a fluid flow inside 2D square and 3D cubic cavities

under various configurations were simulated and analyzed using a

spectral code I developed.

This code was validated against known studies in the 3D lid-driven

cavity. It was then used to explore the various dynamical behaviors

close to the onset

The dynamics of a fluid flow inside 2D square and 3D cubic cavities

under various configurations were simulated and analyzed using a

spectral code I developed.

This code was validated against known studies in the 3D lid-driven

cavity. It was then used to explore the various dynamical behaviors

close to the onset of instability of the steady-state flow, and explain

in the process the mechanism underlying an intermittent bursting

previously observed. A fairly complete bifurcation picture emerged,

using a combination of computational tools such as selective

frequency damping, edge-state tracking and subspace restriction.

The code was then used to investigate the flow in a 2D square cavity

under stable temperature stratification, an idealized version of a lake

with warmer water at the surface compared to the bottom. The governing

equations are the Navier-Stokes equations under the Boussinesq approximation.

Simulations were done over a wide range of parameters of the problem quantifying

the driving velocity at the top (e.g. wind) and the strength of the stratification.

Particular attention was paid to the mechanisms associated with the onset of

instability of the base steady state, and the complex nontrivial dynamics

occurring beyond onset, where the presence of multiple states leads to a

rich spectrum of states, including homoclinic and heteroclinic chaos.

A third configuration investigates the flow dynamics of a fluid in a rapidly

rotating cube subjected to small amplitude modulations. The responses were

quantified by the global helicity and energy measures, and various peak

responses associated to resonances with intrinsic eigenmodes of the cavity

and/or internal retracing beams were clearly identified for the first time.

A novel approach to compute the eigenmodes is also described, making accessible

a whole catalog of these with various properties and dynamics. When the small

amplitude modulation does not align with the rotation axis (precession) we show

that a new set of eigenmodes are primarily excited as the angular velocity

increases, while triadic resonances may occur once the nonlinear regime kicks in.
ContributorsWu, Ke (Author) / Lopez, Juan (Thesis advisor) / Welfert, Bruno (Thesis advisor) / Tang, Wenbo (Committee member) / Platte, Rodrigo (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2019