Matching Items (19)

132777-Thumbnail Image.png

Frequency–Modulated Continuous–Wave Millimeter–Band Radar for Volcanic Ash Detection

Description

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus,

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.

Contributors

Agent

Created

Date Created
2019-05

132785-Thumbnail Image.png

Frequency–Modulated Continuous–Wave Millimeter–Band Radar for Volcanic Ash Detection

Description

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus,

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.

Contributors

Agent

Created

Date Created
2019-05

132515-Thumbnail Image.png

Around the Corner Imaging: Developing a Graphical User Interface

Description

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.

Contributors

Created

Date Created
2019-05

137020-Thumbnail Image.png

Phase Recovery and Unimodular Waveform Design

Description

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this ill-posed problem. Two such algorithms were examined: alternating projections, utilizing iterative Fourier transforms with manipulations performed in each domain on every iteration, and phase lifting, converting the problem to that of trace minimization, allowing for the use of convex optimization algorithms to perform the signal recovery. These recovery algorithms were compared on a basis of robustness as a function of signal-to-noise ratio. A second problem examined was that of unimodular polyphase radar waveform design. Under a finite signal energy constraint, the maximal energy return of a scene operator is obtained by transmitting the eigenvector of the scene Gramian associated with the largest eigenvalue. It is shown that if instead the problem is considered under a power constraint, a unimodular signal can be constructed starting from such an eigenvector that will have a greater return.

Contributors

Created

Date Created
2014-05

137081-Thumbnail Image.png

Passive Radar Signal Generation and Scenario Simulation

Description

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK) signal, quadrature phase-shift keying (QPSK) signal, or digital terrestrial television (DTTV) signal. A scenario is then created using user defined parameters that simulates reception of the original signal on two different channels, a reference channel and a surveillance channel. The signal on the surveillance channel is delayed and Doppler shifted according to a point target scattering profile. An ambiguity function detector is implemented to identify the time delays and Doppler shifts associated with reflections off of the targets created. The results of an example are included in this report to demonstrate the simulation capabilities.

Contributors

Agent

Created

Date Created
2014-05

135425-Thumbnail Image.png

Edge Detection from Spectral Phase Data

Description

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.

Contributors

Agent

Created

Date Created
2016-05

150423-Thumbnail Image.png

Dynamic waveform design for track-before-detect algorithms in radar

Description

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without setting any threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian sequential estimation approach is used with the TBD algorithm (PF-TBD) to estimate the dynamic target state. A waveform-agile TBD technique is proposed that integrates the PF-TBD with a waveform selection technique. The new approach predicts the waveform to transmit at the next time step by minimizing the predicted mean-squared error (MSE). As a result, the radar parameters are adaptively and optimally selected for superior performance. Based on previous work, this thesis highlights the applicability of the predicted covariance matrix to the lower SNR waveform-agile tracking problem. The adaptive waveform selection algorithm's MSE performance was compared against fixed waveforms using Monte Carlo simulations. It was found that the adaptive approach performed at least as well as the best fixed waveform when focusing on estimating only position or only velocity. When these estimates were weighted by different amounts, then the adaptive performance exceeded all fixed waveforms. This improvement in performance demonstrates the utility of the predicted covariance in waveform design, at low SNR conditions that are poorly handled with more traditional tracking algorithms.

Contributors

Agent

Created

Date Created
2011

152757-Thumbnail Image.png

Radar tracking waveform design in continuous space and optimization selection using differential evolution

Description

Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous

Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained to the surface of the three dimensional unit sphere. Cubic IF functions subsume well-known IF functions such as linear, quadratic monomial, and cubic monomial IF functions. In addition, all nonlinear IF functions sufficiently approximated by a third order Taylor series over the unit time sequence can be represented in this space. Analog methods for generating polynomial IF waveforms are well established allowing for practical implementation in real world systems. By sufficiently constraining the search space to these waveforms of interest, alternative optimization methods such as differential evolution can be used to optimize tracking performance in a variety of radar environments. While simplified tracking models and finite waveform dictionaries have information theoretic results, continuous waveform design in high SNR, narrowband, cluttered environments is explored.

Contributors

Agent

Created

Date Created
2014

153726-Thumbnail Image.png

Radar target tracking with varying levels of communications interference for shared spectrum access

Description

As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in

As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in low probability of detection even when sequential Monte Carlo

tracking methods such as the particle filter (PF) are used that better match the target kinematic model. In particular, the tracking performance can fluctuate as the power level of the communications interference can vary dynamically and unpredictably.

This work proposes to integrate the interacting multiple model (IMM) selection approach with the PF tracker to allow for dynamic variations in the power spectral density of the communications interference. The model switching allows for a necessary transition between different communications interference power spectral density (CI-PSD) values in order to reduce prediction errors. Simulations demonstrate the high performance of the integrated approach with as many as six dynamic CI-PSD value changes during the target track. For low signal-to-interference-plus-noise ratios, the derivation for estimating the high power levels of the communications interference is provided; the estimated power levels would be dynamically used in the IMM when integrated with a track-before-detect filter that is better matched to low SINR tracking applications.

Contributors

Agent

Created

Date Created
2015

154672-Thumbnail Image.png

Transmit waveform design for coexisting radar and communications systems

Description

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-to-interference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both systems by co-designing a common transmit waveform.

When concentrating on improving radar tracking performance, a pulsed radar that is tracking a single target coexisting with high powered communications interference is considered. Although the Cramer-Rao lower bound (CRLB) on the covariance of an unbiased estimator of deterministic parameters provides a bound on the estimation mean squared error (MSE), there exists an SINR threshold at which estimator covariance rapidly deviates from the CRLB. After demonstrating that different radar waveforms experience different estimation SINR thresholds using the Barankin bound (BB), a new radar waveform design method is proposed based on predicting the waveform-dependent BB SINR threshold under low SINR operating conditions.

A novel method of predicting the SINR threshold value for maximum likelihood estimation (MLE) is proposed. A relationship is shown to exist between the formulation of the BB kernel and the probability of selecting sidelobes for the MLE. This relationship is demonstrated as an accurate means of threshold prediction for the radar target parameter estimation of frequency, time-delay and angle-of-arrival.

For the co-design radar and communications system problem, the use of a common transmit waveform for a pulse-Doppler radar and a multiuser communications system is proposed. The signaling scheme for each system is selected from a class of waveforms with nonlinear phase function by optimizing the waveform parameters to minimize interference between the two systems and interference among communications users. Using multi-objective optimization, a trade-off in system performance is demonstrated when selecting waveforms that minimize both system interference and tracking MSE.

Contributors

Agent

Created

Date Created
2016