Matching Items (7)
Filtering by

Clear all filters

168415-Thumbnail Image.png
Description
Satellite communications employs circular polarization (CP) to circumvent thewell-known phenomenon known as Faraday Rotation, where the ionosphere rotates the horizontal and vertical polarization components resulting in signal degradation especially at lower frequencies, i.e., VHF and L-band, and in tropical regions of the earth. Satellite circularly polarized antenna feed technology commonly employs bulkyand

Satellite communications employs circular polarization (CP) to circumvent thewell-known phenomenon known as Faraday Rotation, where the ionosphere rotates the horizontal and vertical polarization components resulting in signal degradation especially at lower frequencies, i.e., VHF and L-band, and in tropical regions of the earth. Satellite circularly polarized antenna feed technology commonly employs bulkyand lossy 90-degree hybrid combiners to convert linear polarization to circular polarization, which results in a higher noise figure for receive applications and a less repeatable and more difficult design to tune and manufacture. This thesis aims at designing, modeling and simulating a prototype S/X dual bandCP feed/polarizer utilizing a technique known as the “Spread-Squeeze” polarizer, which offers the advantages of compact size, ease of manufacture, and lower loss and noise figure, relative to the current technology that often employs an external 3-dB hybrid combiner. Ansys High Frequency Structure Simulator (HFSS), a commercial electromagnetic modeling and simulation tool, is used for the simulations. Further, this thesis aims to characterize the performance of the dual feed hornwith respect to aperture efficiency, that is, the degree to which the feed horn illuminates the parabolic reflector.
ContributorsCowan, Brad (Author) / Aberle, James (Thesis advisor) / Pan, George (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2021
168340-Thumbnail Image.png
Description
This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna

This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna is modeled and simulated in lossy media. First, the vector wave functions is solved in the fundamental mode. Next the energy flow velocity is plotted to show near-field energy distribution for both TM and TE in air and seawater environment. Finally the power relation in seawater is derived to calculate the source dipole moment and required power. In the second part, the current distribution on the antenna is derived by solving EFIE with moment of methods (MoM). Both triangle and Coifman wavelet (Coiflet) are used as basis and weight functions. Then Input impedance of the antenna is computed and results are compared with traditional sinusoid current distribution assumption. Finally the input impedance of designed antenna is computed and matching network is designed and show resonant at designed frequency. In the third part, GCPW is modeled and measured in E-band. Laboratory measurements are conducted in 75 to 84 GHz. The original system is embedded with error boxes due to misalignment and needed to be de-embedded. Then the measurement data is processed and the results is compared with raw data. In the fourth part, the horn antennas and slotted waveguide array antenna (SWA) are designed for automotive radar in 75GHz to 78GHz. The horn antennas are fabricated using 3D printing of ABS material, and electro-plating with copper. The analytic solution and HFSS simulation show good agreement with measurement.
ContributorsZhou, Sai (Author) / Pan, George (Thesis advisor) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2021
187661-Thumbnail Image.png
Description
Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of

Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of a phased array antenna with an augmented scanning range, aiming to establish a clear connection between mathematical principles and practical circuitry. To achieve this goal, the Van der Pol (VDP) model is applied to a single-transistor oscillator to obtain the isolated limit cycle. The coupled oscillators are then integrated into a 1 times 7 coupled phased array, using the Keysight PathWave Advanced Design System (ADS) for tuning and optimization. The VDP model is used for analytic study of bifurcation, quasi-sinusoidal oscillation, quasi-periodic chaos, and oscillator death, while ADS schematics guide engineering implementation and physical fabrication. The coupled oscillators drive cavity-backed antennas, forming a one-dimensional scanning antenna array of 1 times 7. The approaches for increasing the scanning range performance are discussed.
ContributorsZhang, Kaiyue (Author) / Pan, George (Thesis advisor) / Yu, Hongbin (Committee member) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2023
171374-Thumbnail Image.png
Description
Terahertz (THz) waves (300 GHz to 10 THz) constitute the least studied part of the electromagnetic (EM) spectrum with unique propagation properties that make them attractive to emerging sensing and imaging application. As opposed to optical signals, THz waves can penetrate several non-metallic materials (e.g., plastic, wood, and thin tissues),

Terahertz (THz) waves (300 GHz to 10 THz) constitute the least studied part of the electromagnetic (EM) spectrum with unique propagation properties that make them attractive to emerging sensing and imaging application. As opposed to optical signals, THz waves can penetrate several non-metallic materials (e.g., plastic, wood, and thin tissues), thus enabling several applications in security monitoring, non-destructive evaluation, and biometrics. Additionally, THz waves scatter on most surfaces distinctively compared with lower/higher frequencies (e.g., microwave/optical bands). Therefore, based on these two interesting THz wave propagation properties, namely penetration and scattering, I worked on THz imaging methods that explore non-line-of-sight (NLoS) information. First, I use a THz microscopy method to probe the fingertips as a new technique for fingerprint scanning. Due to the wave penetration in the THz range, I can exploit sub-skin traits not visible with current approaches to obtain a more robust and secure fingerprint scanning method. I also fabricated fingerprint spoofs using latex to compare the imaging results between real and fake fingers. Next, I focus on THz imaging hardware topologies and algorithms for longer-distance imaging applications. As such, I compare the imaging performance of dense and sparse antenna arrays through simulations and measurements. I show that sparse arrays with nonuniform amplitudes can provide lower side lobes in the images. Besides, although sparse arrays feature a much smaller total number of elements, dense arrays have advantages when imaging scenarios with multiple objects. Afterward, I propose a THz imaging method to see around obstacles/corners. THz waves’ unique scattering properties are helpful to implement around-the-corner imaging. I carried out both simulations and measurements in various scenarios to validate the proposed method. The results indicate that THz waves can reveal the hidden scene with centimeter-scale resolution using proper rough surfaces and moderately sized apertures. Moreover, I demonstrate that this imaging technique can benefit simultaneous localization and mapping (SLAM) in future communication systems. NLoS images enable accurate localization of blocked users, hence increasing the link robustness. I present both simulation and measurement results to validate this SLAM method. I also show that better localization accuracy is achieved when the user's antenna is omnidirectional rather than directional.
ContributorsCui, Yiran (Author) / Trichopoulos, Georgios (Thesis advisor) / Balanis, Constantine (Committee member) / Aberle, James (Committee member) / Alkhateeb, Ahmed (Committee member) / Arizona State University (Publisher)
Created2022
161744-Thumbnail Image.png
Description
This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases

This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases maximum common-mode transient immunity and the isolation capability of galvanic isolators in a low-cost standard CMOS solution beyond the limits provided from the vertical coupling. The design provides the highest reported CMTI (common-mode transient immunity) of more than 600 kV/µs, 5 kVpk isolation, and a chip area of 0.95 mm2. In the second work, a bi-directional ultra-wideband transformer-coupled galvanic isolator is reported for the first time. The proposed design merges the functionality of two isolated channels into one magnetically coupled communication, enabling up to 50% form-factor and assembly cost reduction while achieving a simultaneously robust and state-of-art performance. This work achieves simultaneous robust, wideband, and energy-efficient performance of 300 Mb/s data rate, isolation of 7.8 kVrms, and power consumption and propagation delay of 200 pJ/b and 5 ns, respectively, in only 0.8 mm2 area. The third works studies class-E pulse-width modulated (PWM) Power amplifiers (PAs). For the first time, it presents a design technique to significantly extend the Power back-off (PBO) dynamic range of PWM PAs over the prior art. A proof-of-concept watt-level class-E PA is designed using a GaN HEMT and exhibits more than 6dB dynamic range for a 50 to 30 percent duty cycle variation. Moreover, in this work, the effects of non-idealities on performance and design of class-E power amplifiers for variable supply on and pulse-width operations are characterized and studied, including the effect of non-linear parasitic capacitances and its exploitation for enhancement of average efficiency and self-heating effects in class-E SMPAs using a new over dry-ice measurement technique was presented for this first time. The non-ideality study allows for capturing a full view of the design requirement and considerations of class-E power amplifiers and provides a window to the phenomena that lead to a mismatch between the ideal and actual performance of class-E power amplifiers and their root causes.
ContributorsJavidahmadabadi, Mahdi (Author) / Kitchen, Jennifer N (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Burton, Richard (Committee member) / Arizona State University (Publisher)
Created2021
161759-Thumbnail Image.png
Description
This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces– RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable the development of high-spatial-resolution imaging and high-throughput wireless communication systems that leverage electrically large apertures to form high-gain steerable beams. For the rigorous

This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces– RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable the development of high-spatial-resolution imaging and high-throughput wireless communication systems that leverage electrically large apertures to form high-gain steerable beams. For the rigorous evaluation of these systems’ performance in realistic application scenarios, full-wave simulations are needed to capture all the exhibited electromagnetic phenomena. However, the small wavelengths of mmWave/THz bands lead to enormous meshes in conventional full-wave simulators. Thus, a novel numerical decomposition technique is presented, which decomposes the full-wave models in smaller domains with less meshed elements, enabling their computationally efficient analysis. Thereafter, this method is leveraged to study a novel radar configuration that employs a rotating linear antenna with beam steering capabilities to form 3D images. This imaging process requires fewer elements to carry out high-spatial-resolution imaging compared to traditional 2D phased arrays, constituting a perfect candidate in low-profile, low-cost applications. Afterward, a high-yield nanofabrication technique for mmWave/THz graphene switches is presented. The measured graphene sheet impedances are incorporated into equivalent circuit models of coplanar switches to identify the optimum mmWave/THz switch topology that would enable the development of large-scale RRSs.ii Thereon, the process of integrating the optimized graphene switches into largescale mmWave/THz RRSs is detailed. The resulting RRSs enable dynamic beam steering achieving 4-bits of phase quantization –for the first time in the known literature– eliminating the parasitic lobes and increasing the aperture efficiency. Furthermore, the devised multi-bit configurations use a single switch-per-bit topology retaining low system complexity and RF losses. Finally, single-bit RRSs are modified to offer single-lobe patterns by employing a surface randomization technique. This approach allows for the use of low-complexity single-bit configurations to suppress the undesired quantization lobes without residing to the use of sophisticated multi-bit topologies. The presented concepts pave the road toward the implementation and proliferation of large-scale reconfigurable beamforming apertures that can serve both as mmWave/THz imagers and as relays or base stations in future wireless communication applications.
ContributorsTheofanopoulos, Panagiotis (Author) / Trichopoulos, Georgios (Thesis advisor) / Balanis, Constantine (Committee member) / Aberle, James (Committee member) / Bliss, Dan (Committee member) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05