Matching Items (6)
Filtering by

Clear all filters

152191-Thumbnail Image.png
Description
Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious

Epidemiological theory normally does not predict host extinction from infectious disease because of a host density threshold below which pathogens cannot persist. However, host extinction can occur when a biotic or abiotic pathogen reservoir allows for density-independent transmission. Amphibians are facing global population decline and extinction from the emerging infectious disease chytridiomycosis, caused by the fungus Batrachochytrium dentrobatidis (Bd). I use the model species Eleutherodactylus coqui to assess the impact of Bd on terrestrial direct-developing frog species, a common life history in the tropics. I tested the importance of two key factors that might influence this impact and then used laboratory experiments and published field data to model population-level impacts of Bd on E. coqui. First, I assessed the ontogenetic susceptibility of E. coqui by exposing juvenile and adult frogs to the same pathogen strain and dose. Juveniles exposed to Bd had significantly lower survival rates compared with control juveniles, while adult frogs often cleared infection. Second, I conducted experiments to determine whether E. coqui can become infected with Bd indirectly from contact with zoospores shed onto vegetation by an infected frog and from direct exposure to an infected frog. Both types of transmission were observed, making this the first demonstration that amphibians can become infected indirectly in non-aquatic habitats. Third, I tested the hypothesis that artificially-maintained cultures of Bd attenuate in pathogenicity, an effect known for other fungal pathogens. Comparing two cultures of the same Bd strain with different passage histories revealed reduced zoospore production and disease-induced mortality rates for a susceptible frog species (Atelopus zeteki) but not for the less-susceptible E. coqui. Finally, I used a mathematical model to project the population-level impacts of chytridiomycosis on E. coqui. Model analysis showed that indirect transmission, combined with either a high rate of zoospore production or low rate of zoospore mortality, is required for Bd to drive E. coqui populations below an extinction threshold. High rates of transmission plus frequent re-infection could lead to poor recruitment of infected juveniles and population decline. My research adds further insight into how emerging infectious disease is contributing to the loss of amphibian biodiversity.
ContributorsLanghammer, Penny F. (Author) / Collins, James P. (Thesis advisor) / Brooks, Thomas M (Committee member) / Burrowes, Patricia A. (Committee member) / Anderies, John M (Committee member) / Escalante, Ananias A (Committee member) / Smith, Andrew T. (Committee member) / Arizona State University (Publisher)
Created2013
133843-Thumbnail Image.png
Description
Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was

Amphibians have been experiencing a worldwide decline that is in part caused by an infectious disease, chytridiomycosis, specific to frogs and salamanders. Globally many species have declined or gone extinct because of the pathogenic fungus Batrachochytrium dendrobatidis, also known as the amphibian chytrid or Bd. By the time Bd was discovered it was too late to stop the spread and it has now been found on almost every continent. The trade of captive amphibians, used as pets, bait, and educational animals provides an opportunity to spread Bd. Because some amphibians can carry Bd without experiencing symptoms, it is possible for even healthy looking amphibians to spread the amphibian chytrid if they are moved from one location to another. Recently, a new species Batrachochytrium salamandrivorans (Bsal) was found on salamanders. Bsal was identified before it reached the United States, prompting concern regarding its spread and a call for regulation regarding the trade of captive amphibians. There are some regulations in place controlling the trade of amphibians, but they are insufficient to stop the spread of amphibian chytrid in captive populations. A 2016 law prohibits the importation of 201 salamander species. However, there is no central organization to sample or certify if amphibians are free from Bd or Bsal. Although some stores say they test for these pathogens the tests are unregulated and not reported to any central body. If the captive amphibian trade is to go disease free, there would need to be a significant push to coordinate testing efforts. To estimate Bd's prevalence in Arizona captive amphibian populations, I contacted pet stores, bait stores, and sanctuary or educational organizations to ask if I could sample their amphibian collections. My research built on the 2008 work of Angela Picco, who sampled for the amphibian chytrid in Arizona bait shops. I found that amphibian owners were often hesitant and unwilling to participate in this research opportunity. There are multiple reasons for this hesitancy including a fear of increased regulation, the potential for reporting to a government agency (USDA), or the eventual cessation of amphibian trade. The lack of willing participants suggests there may be difficulties in coordinating future sampling efforts for Bd and Bsal.
ContributorsFadlovich, Rachel Maurine (Author) / Collins, James (Thesis director) / Minteer, Ben (Committee member) / Brus, Evan (Committee member) / School of Life Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134587-Thumbnail Image.png
Description
Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona

Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona Game and Fish Department has worked for the last 12 years to recover populations of Chiricahua Leopard Frogs to ensure the species survives in the Huachuca Mountains in southeastern Arizona. During this time, the department tested for Bd throughout their release sites. As a result of large differences in prevalence noted in prior sampling for Bd in Miller and Ramsey canyons, I investigated abiotic factors that could explain these differences. I analyzed water samples from two canyons in the Huachuca Mountains and used nutrient analysis and filter extraction to test for differences in abiotic factors between these two sites that could affect Bd transmission. Results show that Ramsey Canyon was a positive site for Bd, while Miller Canyon remained negative. Results from water temperature estimates as well as a test for 30 elements revealed possible reasons for differences in Bd transmission between the two canyons.
ContributorsSmith, Paige Gabrielle (Author) / Collins, James P. (Thesis director) / Franklin, Janet (Committee member) / Sredl, Michael J. (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134991-Thumbnail Image.png
Description
Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing chytridiomycosis, is the cause of massive amphibian die-offs. As with any host-pathogen relationship, it is paramount to understand the growth and reproduction of the pathogen that causes an infectious disease outbreak. The life-cycle of the pathogen, Bd, is strongly influenced by temperature;

Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing chytridiomycosis, is the cause of massive amphibian die-offs. As with any host-pathogen relationship, it is paramount to understand the growth and reproduction of the pathogen that causes an infectious disease outbreak. The life-cycle of the pathogen, Bd, is strongly influenced by temperature; however, previous research has focused on Bd isolated from limited geographic ranges, and may not be representative of Bd on a global scale. My research examines the relationship between Bd and temperature on the global level to determine the actual thermal maximum of Bd. Six isolates of Bd, from three continents, were incubated at a temperature within the thermal range (21°C) and a temperature higher than the optimal thermal range (27°C). Temperature affected the growth and zoosporangium size of all six isolates of Bd. All six isolates had proliferative growth at 21°C, but at 27°C the amount and quality of growth varied per isolate. My results demonstrate that each Bd isolate has a different response to temperature, and the thermal maximum for growth varies with each isolate. Further understanding of the difference in isolate response to temperature can lead to a better understanding of Bd pathogen dynamics, as well as allow us the ability to identify susceptible hosts and environments before an outbreak.
ContributorsWoodland, Laura Elizabeth (Author) / Collins, James (Thesis director) / Davidson, Elizabeth (Committee member) / Roberson, Robert (Committee member) / School of Politics and Global Studies (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135463-Thumbnail Image.png
Description
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In this thesis, the causes of phenotypic plasticity in Bd are tested by exposing the fungus to different substrates, including powdered frog skin and keratin, which seems to play an important role in the fungus's colonization of amphibian epidermis. A novel swelling structure emerging from Bd germlings developed when exposed to keratin and frog skin. This swelling has not been observed in Bd grown in laboratory cultures before, and it is possible that it is analogous to the germ tube Bd develops in vivo. Growth of the swelling suggests that keratin plays a role in the phenotypic plasticity expressed by Bd.
ContributorsBabb-Biernacki, Spenser Jordan (Author) / Collins, James P. (Thesis director) / Roberson, Robert (Committee member) / Brus, Evan (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132488-Thumbnail Image.png
Description
Infectious disease in wild animals has historically been a challenge that is difficult to overcome, primarily because isolating a disease outbreak to prevent further transmission in these types of populations is nearly impossible. Wild animals are free to roam, and humans often have limited means of tracking infection in populations.

Infectious disease in wild animals has historically been a challenge that is difficult to overcome, primarily because isolating a disease outbreak to prevent further transmission in these types of populations is nearly impossible. Wild animals are free to roam, and humans often have limited means of tracking infection in populations. Vaccines and treatments can be formulated but are often somewhat impractical for wild populations because it is not feasible to vaccinate or treat every member in a susceptible community. One such pathogen, Batrochochytrium dendrobatidis (Bd) is infecting amphibian populations around the world to the point where many species are already extinct. Even though finding an effective preventative for the fungal pathogen may not mean that I am able to reach every member in a population, it may mean the difference between extinction and eventual release back into the wild for threatened populations.
In this study I hoped to create an attenuated version of Batrochochytrium dendrobatidis, by using a novel laser technology: SEPHODIS. This laser technology disrupts hydrogen bonds between proteins in the lumen of the cell while simultaneously preserving the membrane and associated proteins on the outside of the cell. This process ultimately affects the pathogenicity of the target but leaves identity markers intact so that the host immune system may recognize the pathogen and create antibodies against it. The laser was ultimately effective at killing Bd fungal cells, and I did observe a significant change in the appearance of the cells. However, samples obtained after exposure to the laser were contaminated and more research is needed to determine if SEPHODIS could be a feasible method for vaccine production.
ContributorsRidley, Kylie Madison (Author) / Collins, James (Thesis director) / Tsen, Kong-Thon (Committee member) / Brus, Evan (Committee member) / School of Art (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05