Matching Items (2)
Filtering by

Clear all filters

137412-Thumbnail Image.png
Description
Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Because of this, many new types of equipment have been created in an attempt to induce instability, such as the COR Bench. 15

Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Because of this, many new types of equipment have been created in an attempt to induce instability, such as the COR Bench. 15 males and 7 females between the ages of 18 and 30 were recruited for the present study, which tested two forms of instability: using one dumbbell rather than two, and lifting on the COR bench compared to a flat bench. Thusly, EMG was used to measure muscle activity in four separate conditions of unilateral bench press movements: on a flat bench with one dumbbell, on a flat bench with two dumbbells, on the COR Bench with one dumbbell, and on the COR Bench with two dumbbells. Results indicated that lifting with one dumbbell compared to two dumbbells on the flat bench significantly increased muscle activity across all four muscles being analyzed (pectoralis major, p = .005; middle trapezius, p = .008; external obliques, p = .004; and internal obliques, p = .003), but lifting with one dumbbell compared to two dumbbells on the COR Bench only significantly increased muscle activity in the middle trapezius (p = .001), external obliques(p = . 032), and internal obliques (p = .001). The only muscle to exhibit a significant increase in muscle activity when going from one dumbbell on the flat bench to one dumbbell on the COR Bench was the middle trapezius (p = .010). These results imply that the COR Bench itself does not increase muscle activity as much as switching from two dumbbells to one dumbbell, regardless of the bench being used.
ContributorsPatterson, Jeffrey (Author) / Harper, Erin (Thesis director) / Broman, Tannah (Committee member) / Cataldo, Donna (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-12
137606-Thumbnail Image.png
Description
The purpose of this study was to determine if there were asymmetries in ground reaction forces (GRF) between dancers and non-dancers, and to see the effect of GRF on external (ER) and internal rotator (IR) strength. Subjects performed double- and single-legged jumps on a force plate with a motion capture

The purpose of this study was to determine if there were asymmetries in ground reaction forces (GRF) between dancers and non-dancers, and to see the effect of GRF on external (ER) and internal rotator (IR) strength. Subjects performed double- and single-legged jumps on a force plate with a motion capture marker system attached at anatomical landmarks, and then had strength and range of motion (ROM) of their internal and external rotators tested along at degrees of hip flexion. There were no significant differences in GRF between legs for all subjects involved. However, stronger hip ER was negatively correlated with vertical GRF (z-axis), positively correlated with anteroposterior (y-axis) GRF, and higher mediolateral (x-axis) GRF from double-leg trials was positively correlated with knee abduction. Thus, future studies should further investigate GRF broken into axial components as well as the time to peak GRF to determine any relation of these factors to knee valgus and ACL injury risk.
ContributorsDiamond, Alexander (Author) / Harper, Erin (Thesis director) / Ringenbach, Shannon (Committee member) / Wiley, Alex (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-05