Matching Items (6)
Filtering by

Clear all filters

153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136113-Thumbnail Image.png
Description
This research study examined the bilateral asymmetry found in muscle pairs including the right and left sides of the upper rectus abdominis, lower rectus abdominis, external oblique, and internal oblique in college-aged, apparently fit men and women. Bilateral symmetry was found using surface electromyography (EMG) during three core exercises: 1)

This research study examined the bilateral asymmetry found in muscle pairs including the right and left sides of the upper rectus abdominis, lower rectus abdominis, external oblique, and internal oblique in college-aged, apparently fit men and women. Bilateral symmetry was found using surface electromyography (EMG) during three core exercises: 1) ab-slides using paper plates (paper), 2) planks, and 3) ab-slides using a commercial AbSlide® roller device by comparing maximal voluntary contractions (MVCs) of the four muscles previously listed. This research analyzed the percentage of muscle activation during these exercises to each person’s MVC using Noraxon® software. Analysis found that asymmetry for each muscle group was present although there is no measure of clinical significance for symmetry scores of the core muscles yet.
Asymmetry scores were calculated for all three exercises. The exercise that produced the greatest absolute, average asymmetry score was the ab-slide using the roller device. The muscle that the greatest absolute asymmetry was found was the internal oblique. This means that during the three exercises and MVC, the greatest difference between right and left side pair muscles was observed in the internal obliques. The standard deviation of symmetry scores for all exercises and muscles was great as there was much variation in the skill levels in the participants of this study. Bilateral asymmetry was found by visually comparing the asymmetry scores. In conclusion, bilateral asymmetry was found in the core muscles of college-aged individuals during bilateral abdominal exercises.
ContributorsFavaro, Miguel Angel (Author) / Berger, Christopher (Thesis director) / Lorenz, Kent (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
137412-Thumbnail Image.png
Description
Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Because of this, many new types of equipment have been created in an attempt to induce instability, such as the COR Bench. 15

Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Because of this, many new types of equipment have been created in an attempt to induce instability, such as the COR Bench. 15 males and 7 females between the ages of 18 and 30 were recruited for the present study, which tested two forms of instability: using one dumbbell rather than two, and lifting on the COR bench compared to a flat bench. Thusly, EMG was used to measure muscle activity in four separate conditions of unilateral bench press movements: on a flat bench with one dumbbell, on a flat bench with two dumbbells, on the COR Bench with one dumbbell, and on the COR Bench with two dumbbells. Results indicated that lifting with one dumbbell compared to two dumbbells on the flat bench significantly increased muscle activity across all four muscles being analyzed (pectoralis major, p = .005; middle trapezius, p = .008; external obliques, p = .004; and internal obliques, p = .003), but lifting with one dumbbell compared to two dumbbells on the COR Bench only significantly increased muscle activity in the middle trapezius (p = .001), external obliques(p = . 032), and internal obliques (p = .001). The only muscle to exhibit a significant increase in muscle activity when going from one dumbbell on the flat bench to one dumbbell on the COR Bench was the middle trapezius (p = .010). These results imply that the COR Bench itself does not increase muscle activity as much as switching from two dumbbells to one dumbbell, regardless of the bench being used.
ContributorsPatterson, Jeffrey (Author) / Harper, Erin (Thesis director) / Broman, Tannah (Committee member) / Cataldo, Donna (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-12
164630-Thumbnail Image.png
Description

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices.

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices. These bio-inspired mechanisms do not necessarily relate to a robotic device, though since the 1900s, robotic principles have been applied to the design of exoskeletons making their development a subfield in robotic research. There are different multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This project is being developed for therapeutic purposes in conjunction between Arizona State University and Mayo Clinic. Because of the nature of this project, I am responsible for the development of a lightweight brace that could be applied to the elbow joint that was designed by Dr. Kevin Hollander. In this project, my research centered on the use of the Wilmer orthosis brace design, and its possible application to the exoskeleton elbow being developed for Mayo Clinic. This brace is a lightweight solution that provides extra comfort to the user.

ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis director) / Aukes, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05