Matching Items (3)

Filtering by

Clear all filters

135380-Thumbnail Image.png

Exploring Computational Thinking in 9-12 Education: Developing a Computer Science Curriculum for Bioscience High School

Description

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.

Contributors

Agent

Created

Date Created
2016-05

135177-Thumbnail Image.png

Detection of Muscle Specific EMG Signals in Post Stroke Patients

Description

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems when converting from the laboratory to marketable devices, specifically in home devices. Many patients have issues with needles and the extra care required of needle EMG is prohibitive. Therefore, a surface EMG device that can obtain clear signals from individual muscles would be valuable to many markets in the development of next generation in home devices. Here, signals from surface EMG were analyzed using a low noise EMG evaluation system (RHD 2000; Intan Technologies). The signal to noise ratio (SNR) was calculated using MatLab. The average SNR is 4.447 for the Extensor Carpi Ulnaris, and 7.369 for the Extensor Digitorum Communis. Spectral analysis was performed using the Welch approach in MatLab. The power spectrum indicated that low frequency signals dominate the EMG of small hand muscles. Also, harmonic bands of 60Hz noise were present as part of the signal which should be accounted for with filters in future iterations of the testing method. Provided is evidence that strong, independent signals were acquired and could be used in further application of surface EMG corresponding to lifting of the fingers.

Contributors

Created

Date Created
2016-05

137409-Thumbnail Image.png

Comparing and Analyzing Electromyography and Electroencephalography

Description

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.

Contributors

Agent

Created

Date Created
2013-12